
1. Real Analysis 

An algebra of sets on 𝑋 is nonempty collection 𝐴 of subsets of 𝑋 that is closed under finite 

unions and complements; in other words, if 𝐸1, … , 𝐸𝑛 ∈ 𝐴, then ∪1
𝑛 𝐸𝑗 ∈ 𝐴; and if 𝐸 ∈ 𝐴,  

then 𝐸𝑐 ∈ 𝐴. 

There is a unique smallest 𝜎-algebra 𝑀(𝐸) containg 𝐸,namely, the intersection of all  

𝜎-algebras containing 𝐸.𝑀(𝐸) is called the 𝜎-algebra generated by 𝐸. 

If 𝑋 is any metric space, or more generally any topological space, the 𝜎-algebra generated 

 by the family of open sets in 𝑋 is called the Borel 𝜎-algebra on 𝑋 and is denoted by 𝐵𝑋. 

Let 𝑋 be a set equipped with a 𝜎-algebra 𝑀. A measure on 𝑀 is a function 𝜇:𝑀 → [0,∞]  

such that 

i. 𝜇(𝜙) = 0, 

ii. if {𝐸𝑗}1
∞

 is a sequence of disjoint sets in 𝑀, then 𝜇(∪1
∞ 𝐸𝑗) = ∑1

∞  𝜇(𝐸𝑗). Property (ii) is  

called countable additivity. It implies finite additivity: 

ii'.if 𝐸1, … , 𝐸𝑛 are disjoint sets in 𝑀, then 𝜇(∪1
𝑛 𝐸𝑗) = ∑1

𝑛  𝜇(𝐸𝑗), because one can take  

𝐸𝑗 = 𝜙 for j > n. A function 𝜇 that satisfies (i) and(ii') but not necessarily (ii) is called a  

finitely additive measure. 

If 𝑋 is a set and 𝑀 ⊂ 𝑃(𝑋) is a 𝜎-algebra, (𝑋,𝑀) is called a measurable space and the sets  

in 𝑀 are called measurable sets. If 𝜇 is a measure on (𝑋,𝑀), then (𝑋,𝑀, 𝜇) is called a  

measure space. If a statement about points 𝑥 ∈ 𝑋 is true except for 𝑥 in some every 𝑥.  

we say that it is true almost everywhere (abbreviated a.e:), or for almost every 𝑥. 

A measure whose domain includes all subsets of null sets is called complete. 

An outer measure on a nonempty set 𝑋 is a function 𝜇 that satisfies 

• 𝜇∗(𝜙) = 0 

• 𝜇∗(𝐴) ≤ 𝜇∗(𝐵) if 𝐴 ⊂ 𝐵. 

• 𝜇∗(∪1
∞ 𝐴𝑗) ≤ Σ1

∞𝜇∗(𝐴𝑗). 



If 𝜇∗ is an outer measure on 𝑋, a set 𝐴 ⊂ 𝑋 is called 𝜇∗-measurable if 𝜇∗(𝐸) = 𝜇∗(𝐸 ∩ 𝐴) + 

𝜇∗(𝐸 ∩ 𝐴𝑐) for all 𝐸 ⊂ 𝑋. 

Carathéodory's Theorem. 

If 𝜇∗ is an outer measure on 𝑋, the collection 𝑀 of 𝜇∗-measurable sets is a 𝜎-algebra, and  

the restriction of 𝜇∗ to 𝑀 is a complete measure. 

 

A large family of measures on R whose domain is the Borel 𝜎-algebra B𝑅; such measures  

are called Borel measures on R. 

Lebesgue measure: This is the complete measure 𝜇𝐹 associated to the function 𝐹(𝑥) = 𝑥,  

for which the measure of an interval is simply its length. We shall denote it by 𝑚. The  

domain of 𝑚 is called the class of Lebesgue measurable sets, and we shall denote it by 𝐿.  

The Cantor set 𝐶 is the set of all 𝑥 ∈ [0,1] that have a base3 expansion 𝑥 = Σ𝑎𝑗3
−𝑗 with  

𝑎𝑗 ≠ 1 for all 𝑗. Thus 𝐶 is obtained from [0,1] by removing the open middle third (
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),  

then removing the open middle thirds (
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9
,
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9
) and (
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9
,
8

9
) of the two remaining intervals,  

and so forth. 

We recall that any mapping 𝑓: 𝑋 → 𝑌 between two sets induces a mapping  

𝑓−1: 𝑃(𝑌) → 𝑃(𝑋), defined by 𝑓−1(𝐸) = 𝑥 ∈ 𝑋: 𝑓(𝑥) ∈ 𝐸, which preserves unions,  

intersections, and complements. Thus, if 𝑁 is a 𝜎-algebra on 𝑌, 𝑓−1(𝐸): 𝐸 ∈ 𝑁 is a  

𝜎-algebra on 𝑋. If (𝑋,𝑀) and (𝑌, 𝑁) are measurable spaces. a mapping 𝑓: 𝑋 → 𝑌 is called  

(𝑀,𝑁)-measurable, or just measurable when 𝑀 and 𝑁 are understand, if 𝑓−1(𝐸) ∈ 𝑀 for  

all 𝐸 ∈ 𝑁. 

If (𝑋,𝑀) is a mesaurable space, a real- or complex-valued function 𝑓 on 𝑋 will be called  

𝑀-measurable, or just measurable, if it is (𝑀, 𝐵𝑅) or (𝑀, 𝐵𝐶) measurable. 𝐵𝑅 or 𝐵𝐶 is  

always understood as the 𝜎-algebra on the range space unless otherwise specified. In 

 particular , 𝑓R → C is Lebesgue (resp. Borel) measurable if it is (𝐿, 𝐵𝐶) (resp. (𝐵𝑅 , 𝐵𝐶) )  



measurable; likewise for 𝑓: R → R. 

The characteristic function 𝜒𝐸 of 𝐸 is defined by 𝜒 ∗ 1 if 𝑥 ∈ 𝐸,∗ 0 if 𝑥 ∉ 𝐸. 

A simple function on 𝑋 is a finite linear combination, with complex coefficients, of  

characteristic functions of sets in 𝑀. Equivalently, 𝑓: 𝑋 → C is simple iff 𝑓 is measurable  

and the range of 𝑓 is a finite subset of C. Indeed, we have 𝑓 = Σ1
𝑛𝑧𝑗𝜒𝐸𝑗, where 

 𝐸𝑗 = 𝑓−1(𝑧𝑗) and range (𝑓) = {𝑧1, … , 𝑧𝑛} 

𝐿+ =the space of all measurable functions from 𝑋 to [0,∞]. If 𝜙 is a simple function in 𝐿+ 

with standard representation 𝜙 = Σ1
𝑛𝑎𝑗𝜒𝐸𝑗, we define the integral of 𝜙 with respect to 𝜇  

by ∫ 𝜙𝑑𝜇 = Σ1
𝑛𝑎𝑗𝜇(𝐸𝑗) 

The monotone convergence theorem 

If 𝑓𝑛 is a sequence in 𝐿+such that 𝑓𝑗 ≤ 𝑓𝑗+1 for all 𝑗, and 𝑓 = lim𝑛→∞  𝑓𝑛(= sup𝑛  𝑓𝑛), then ∫ 𝑓

= lim𝑛→∞  ∫ 𝑓𝑛. 

Fatou's Lemma 

If 𝑓𝑛 is any sequence in 𝐿+, then 𝑓(liminf𝑓𝑛) ≤ liminf𝑓𝑓𝑛. 

If 𝑓+and 𝑓−are the positive and negative parts of 𝑓 and at least one of ∫ 𝑓+and ∫ 𝑓−is  

finite, we define ∫ 𝑓 = ∫ 𝑓+ − ∫ 𝑓−. We shall be mainly concerned with the case where  

∫ 𝑓+and 𝑓𝑓− are both finite; we then say that 𝑓 is integrable. Since |𝑓| = 𝑓+ +𝑓−, it is  

clear that 𝑓 is integrable iff ∫ |𝑓| ≤ ∞. 

If 𝑓 is complex-valued measurable function, we say that 𝑓 is integrable if ∫ |𝑓| ≤ ∞.  

More over, if 𝐸 ∈ 𝑀, 𝑓 is integrable on 𝐸 if ∫𝐸  |𝑓| ≤ ∞. 

The space of complex-valued integrable functions is a complex vector space and that the  

integral is a complex-linear functional on it. We denote this space-provisionally- by  

𝐿1(𝜇)(  or 𝐿1(𝑋, 𝜇),, or 𝐿1(𝑋), simply 𝐿1, depending on the contex ). 
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We shall find it more convenient to redefine 𝐿1(𝜇) to be the set of equivalent classes of  

a.e.-defined integrable functions on 𝑋, where 𝑓 and 𝑔 are considered equivalent iff 𝑓 = 𝑔  

a.e. 

We shalll still employ the notation " 𝑓 ∈ 𝐿1(𝜇) " to mean that 𝑓 is an a.e.-defined  

integrable function. 

The dominated convergence theorem. 

Let {𝑓𝑛} be a sequence in 𝐿1 such that (a) 𝑓𝑛 → 𝑓 a.e., and (b) there exists a nonnegative  

𝑔 → 𝐿1 such that |𝑓𝑛| ≤ 𝑔 a.e. for all n. Then 𝑓 → 𝐿1 and ∫ 𝑓 = lim𝑛→∞  ∫ 𝑓𝑛. 

Egoroff's theorem 

Suppose that 𝜇(𝑋) < ∞, and 𝑓1, 𝑓2, …, and 𝑓 are measurable complex-valued functions on 

 𝑋 such that 𝑓𝑛 → 𝑓 a.e. Then for every 𝜖 > 0 there exists 𝐸 ⊂ 𝑋 such that 𝜇(𝐸) < 𝜖 and  

𝑓𝑛 → 𝑓 uniformly on 𝐸𝑐. 

The Fubini-Tonelli theorem. 

Suppose that (𝑋,𝑀, 𝜇) and (𝑌, 𝑁, 𝜈) are 𝜎-finite measure spaces. a.(Tonelli)If  

𝑓 ∈ 𝐿+(𝑋, 𝑌), then the functions 𝑔(𝑥) = 𝑓𝑓𝑛 d𝜈 and ℎ(𝑦) = ∫ 𝑓𝑦 d𝜇 are in 𝐿+(𝑋) and  

𝐿+(𝑌), respectively, and * 

∫ 𝑓 d(𝜇x𝜈) = ∫ [∫ 𝑓(𝑥, 𝑦)d𝜈]d𝜇(𝑥) = ∫ [∫ 𝑓(𝑥, 𝑦)d𝜇]d𝜈(𝑦). 

b.(Fubini)If 𝑓 ∈ 𝐿1(𝜇x𝜈), then 𝑓𝑥 ∈ 𝐿1(𝜈) for a.e. x ∈ 𝑋, 𝑓𝑦 ∈ 𝐿1(𝜇). for a.e. y ∈ 𝑌, the a.e. 

-defined functions 𝑔(𝑥) = ∫ 𝑓𝑥 d𝜈 and ℎ(𝑦) = ∫ 𝑓𝑦 d𝜈 are in 𝐿1(𝜇) and 𝐿1(𝜈), respectively, 

 and (∗) holds 𝑑𝑥𝑑𝑦 = 𝑟𝑑𝑟𝑑𝜃 and 𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑟2sin⁡ 𝜙𝑑𝑟𝑑𝜃𝑑𝜙 

⁡∫  
𝑅𝑛

 exp⁡(−a|𝑥|2)𝑑𝑥 = (
𝜋

𝑎
)
𝑛/2

Γ (
1

2
) = 2∫  

∞

0

 𝑒−𝑟
2
𝑑𝑟 = ∫  

∞

−∞

 𝑒−𝑟
2
𝑑𝑟 = √𝜋.

 

If 𝜈 is a signed measure on (𝑋,𝑀), a set 𝐸 ∈ 𝑀 is called positive ( resp.negatiive, null)  



for 𝜈 if 𝜈(𝐹) ≥ 0( resp. 𝜈(𝐹) ≤ 0,, 𝜈(𝐹) = 0) for all 𝐹 ∈ 𝑀 such that 𝐹 ⊂ 𝐸. 

The Jordan decomposition theorem 

If 𝜈 is a signed measuree, there exist unique positive measures 𝜈+and 𝜈−such that 𝜈 = 

𝜈+ − 𝜈−and 𝜈+ ⊥ 𝜈−. 

The measures 𝜈+and 𝜈−are called the positive and negative variations of 𝜈, and 𝜈 = 𝜈+ − 

𝜈−is called the Jordan decomposition of 𝜈. 

We define the total variation of 𝜈 to be the measure |𝜈| defined by |𝜈| = 𝜈+ + 𝜈−. 

We say that 𝜈 is absolutely continuous with respect to 𝜇 and write 𝜈 ≪ 𝜇 if 𝜈(𝐸) = 0 for  

every 𝐸 ∈ 𝑀 for which 𝜇(𝐸) = 0. 


