1. Real Analysis

An algebra of sets on X is nonempty collection A of subsets of X that is closed under finite
unions and complements; in other words, if E, ..., E,, € A, then UT E; € 4; and if E € A4,
then E€ € A.
There is a unique smallest o-algebra M (E) containg E,namely, the intersection of all
o-algebras containing E. M(E) is called the o-algebra generated by E.
If X is any metric space, or more generally any topological space, the g-algebra generated
by the family of open sets in X is called the Borel o-algebra on X and is denoted by By.
Let X be a set equipped with a g-algebra M. A measure on M is a function u: M — [0, 0]
such that
Lu(e) =0,
ii. if {Ej}io is a sequence of disjoint sets in M, then (U5 E;) = X5 u(E;). Property (ii) is
called countable additivity. It implies finite additivity:
ii"if E;, ..., E,, are disjoint sets in M, then (U} E;) = Y7 u(E;), because one can take
E; = ¢ forj > n. A function u that satisfies (i) and(ii') but not necessarily (ii) is called a
finitely additive measure.
If Xisasetand M c P(X) is a o-algebra, (X, M) is called a measurable space and the sets
in M are called measurable sets. If u is a measure on (X, M), then (X, M, u) is called a
measure space. If a statement about points x € X is true except for x in some every x.
we say that it is true almost everywhere (abbreviated a.e:), or for almost every x.
A measure whose domain includes all subsets of null sets is called complete.
An outer measure on a nonempty set X is a function u that satisfies

o w(g)=0

o uA)<uB)ifAcB.

o w(UP 4;) <zPu(4)).



If u* is an outer measure on X, a set A c X is called u*-measurable if u*(E) = u*(E n A) +

uw(EnA°)forall E c X.

Carathéodory's Theorem.

If u* is an outer measure on X, the collection M of u*-measurable sets is a g-algebra, and

the restriction of u* to M is a complete measure.

A large family of measures on R whose domain is the Borel o-algebra Bg; such measures
are called Borel measures on R.

Lebesgue measure: This is the complete measure uy associated to the function F(x) = x,
for which the measure of an interval is simply its length. We shall denote it by m. The
domain of m is called the class of Lebesgue measurable sets, and we shall denote it by L.

The Cantor set C is the set of all x € [0,1] that have a base3 expansion x = £a;37/ with

a; # 1for all j. Thus C is obtained from [0,1] by removing the open middle third G,g),

then removing the open middle thirds (%, %) and (g, g) of the two remaining intervals,

and so forth.

We recall that any mapping f: X — Y between two sets induces a mapping

f~1:P(Y) - P(X), defined by f~1(E) = x € X: f(x) € E, which preserves unions,
intersections, and complements. Thus, if N is a g-algebraon Y, f1(E):E € Nisa
o-algebra on X. If (X, M) and (Y, N) are measurable spaces. a mapping f: X — Y is called
(M, N)-measurable, or just measurable when M and N are understand, if f~*(E) € M for
allE € N.

If (X, M) is a mesaurable space, a real- or complex-valued function f on X will be called
M-measurable, or just measurable, if it is (M, Bg) or (M, B) measurable. By or B, is
always understood as the g-algebra on the range space unless otherwise specified. In

particular , fR — Cis Lebesgue (resp. Borel) measurable if it is (L, B;) (resp. (Bg, B¢) )



measurable; likewise for f:R — R.

The characteristic function yz of E is defined by y * 1ifx e E,x0if x ¢ E.

A simple function on X is a finite linear combination, with complex coefficients, of
characteristic functions of sets in M. Equivalently, f: X — C is simple iff f is measurable

and the range of f is a finite subset of C. Indeed, we have f = X7z; XEj» where

E; = f~'(z;) and range (f) = {z;, ..., z}

L* =the space of all measurable functions from X to [0, «]. If ¢ is a simple function in L*
with standard representation ¢ = Xl'a; XEj» We define the integral of ¢ with respect to u
by [ ¢du = 2P a;u(E;)

The monotone convergence theorem

If f, is a sequence in L*such that f; < fj,, for all j, and f = lim,,_,, f, (= sup, f,), then [f

= lim,;,_, f fn-

Fatou's Lemma

If f,, is any sequence in L*, then f(liminff,,) < liminff f;,.

If f*and f ~are the positive and negative parts of f and at least one of [ f*and [ f~is
finite, we define [ f = [ f* — [ f~. We shall be mainly concerned with the case where

[ frand ff~ are both finite; we then say that f is integrable. Since |f| = f* +f 7, it is
clear that f is integrable iff [ |f| < oo.

If f is complex-valued measurable function, we say that f is integrable if [ |f| < oo.
More over, if E € M, f is integrable on E if fE |f] < oo.

The space of complex-valued integrable functions is a complex vector space and that the
integral is a complex-linear functional on it. We denote this space-provisionally- by

L*(w)( or LY(X, w),, or L*(X), simply L, depending on the contex ).
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We shall find it more convenient to redefine L' (u) to be the set of equivalent classes of
a.e.-defined integrable functions on X, where f and g are considered equivalent iff f = g
a.e.

We shalll still employ the notation " f € L'(1) " to mean that f is an a.e.-defined

integrable function.

The dominated convergence theorem.

Let {f,,} be a sequence in L' such that (a) f;, - f a.e., and (b) there exists a nonnegative

g — L' such that |f,| < g a.e.foralln. Then f » L' and [ f = lim, o [ f,-

Egoroff's theorem

Suppose that u(X) < o, and fi, f5, ..., and f are measurable complex-valued functions on
X such that f,, —» f a.e. Then for every € > 0 there exists F c X such that u(E) < € and

fn — f uniformly on E*.

The Fubini-Tonelli theorem.

Suppose that (X, M, 1) and (Y, N, v) are o-finite measure spaces. a.(Tonelli)If

f € L*(X,Y), then the functions g(x) = ff, dvand h(y) = [ f¥ du are in L*(X) and
L*(Y), respectively, and *

J f d(uxv) = [ [J fey)dv]dux) = [ [ f(x, y)du]dv(y).

b.(Fubini)If f € L'(uxv), then f, € L'(v) for a.e.x € X, f¥ € L' (). for a.e.y € Y, the a.e.
-defined functions g(x) = [ f, dvand h(y) = [ f¥ dv are in L'(x) and L'(v), respectively,

and () holds dxdy = rdrdf and dxdydz = r?sin ¢drdOde

L exp (—a|x|?)dx = (Z)

1 [o/e) [ee]
F(§> = 2f e dr = f e dr = .
4] —0co

If v is a signed measure on (X, M), a set E € M is called positive ( resp.negatiive, null)
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forvif v(F) > 0(resp. v(F) <0,,v(F) = 0) forall F € M such that F Cc E.

The Jordan decomposition theorem

If v is a signed measuree, there exist unique positive measures v*tand v~—such that v =
vt—vTandvt Lv™.

The measures v*and v~are called the positive and negative variations of v, and v = v* —
v~is called the Jordan decomposition of v.

We define the total variation of v to be the measure |v| defined by |v| = vt +v~.

We say that v is absolutely continuous with respect to ¢ and write v « puif v(E) = 0 for

every E € M for which u(E) = 0.



