1. Real Analysis

An algebra of sets on *X* is nonempty collection *A* of subsets of *X* that is closed under finite unions and complements; in other words, if $E_1, ..., E_n \in A$, then $\bigcup_1^n E_j \in A$; and if $E \in A$, then $E^c \in A$.

There is a unique smallest σ -algebra M(E) containg E, namely, the intersection of all σ -algebras containing E.M(E) is called the σ -algebra generated by E.

If *X* is any metric space, or more generally any topological space, the σ -algebra generated by the family of open sets in *X* is called the Borel σ -algebra on *X* and is denoted by B_X . Let *X* be a set equipped with a σ -algebra *M*. A measure on *M* is a function $\mu: M \to [0, \infty]$ such that

i. $\mu(\phi) = 0$,

ii. if $\{E_j\}_1^\infty$ is a sequence of disjoint sets in *M*, then $\mu(\bigcup_1^\infty E_j) = \sum_1^\infty \mu(E_j)$. Property (ii) is called countable additivity. It implies finite additivity:

ii'.if $E_1, ..., E_n$ are disjoint sets in M, then $\mu(\bigcup_{j=1}^{n} E_j) = \sum_{j=1}^{n} \mu(E_j)$, because one can take $E_j = \phi$ for j > n. A function μ that satisfies (i) and(ii') but not necessarily (ii) is called a finitely additive measure.

If *X* is a set and $M \subset P(X)$ is a σ -algebra, (X, M) is called a measurable space and the sets in *M* are called measurable sets. If μ is a measure on (X, M), then (X, M, μ) is called a measure space. If a statement about points $x \in X$ is true except for *x* in some every *x*. we say that it is true almost everywhere (abbreviated a.e:), or for almost every *x*. A measure whose domain includes all subsets of null sets is called complete. An outer measure on a nonempty set *X* is a function μ that satisfies

- $\mu^*(\phi) = 0$
- $\mu^*(A) \le \mu^*(B)$ if $A \subset B$.
- $\mu^*(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} \mu^*(A_j).$

If μ^* is an outer measure on *X*, a set $A \subset X$ is called μ^* -measurable if $\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$ for all $E \subset X$.

Carathéodory's Theorem.

If μ^* is an outer measure on *X*, the collection *M* of μ^* -measurable sets is a σ -algebra, and the restriction of μ^* to *M* is a complete measure.

A large family of measures on R whose domain is the Borel σ -algebra B_R; such measures are called Borel measures on R.

Lebesgue measure: This is the complete measure μ_F associated to the function F(x) = x, for which the measure of an interval is simply its length. We shall denote it by m. The domain of m is called the class of Lebesgue measurable sets, and we shall denote it by L. The Cantor set C is the set of all $x \in [0,1]$ that have a base3 expansion $x = \Sigma a_j 3^{-j}$ with $a_j \neq 1$ for all j. Thus C is obtained from [0,1] by removing the open middle third $(\frac{1}{3}, \frac{2}{3})$, then removing the open middle thirds $(\frac{1}{9}, \frac{2}{9})$ and $(\frac{7}{9}, \frac{8}{9})$ of the two remaining intervals, and so forth.

We recall that any mapping $f: X \to Y$ between two sets induces a mapping $f^{-1}: P(Y) \to P(X)$, defined by $f^{-1}(E) = x \in X: f(x) \in E$, which preserves unions, intersections, and complements. Thus, if *N* is a σ -algebra on *Y*, $f^{-1}(E): E \in N$ is a σ -algebra on *X*. If (*X*, *M*) and (*Y*, *N*) are measurable spaces. a mapping $f: X \to Y$ is called (*M*, *N*)-measurable, or just measurable when *M* and *N* are understand, if $f^{-1}(E) \in M$ for all $E \in N$.

If (X, M) is a mesaurable space, a real- or complex-valued function f on X will be called M-measurable, or just measurable, if it is (M, B_R) or (M, B_C) measurable. B_R or B_C is always understood as the σ -algebra on the range space unless otherwise specified. In particular, $f R \rightarrow C$ is Lebesgue (resp. Borel) measurable if it is (L, B_C) (resp. (B_R, B_C))

measurable; likewise for $f : \mathbb{R} \to \mathbb{R}$.

The characteristic function χ_E of *E* is defined by $\chi * 1$ if $x \in E, * 0$ if $x \notin E$.

A simple function on *X* is a finite linear combination, with complex coefficients, of characteristic functions of sets in *M*. Equivalently, $f: X \to C$ is simple iff *f* is measurable and the range of *f* is a finite subset of C. Indeed, we have $f = \sum_{i=1}^{n} z_{j} \chi_{E_{i}}$, where

$$E_j = f^{-1}(z_j)$$
 and range $(f) = \{z_1, ..., z_n\}$

 L^+ =the space of all measurable functions from *X* to $[0, \infty]$. If ϕ is a simple function in L^+ with standard representation $\phi = \sum_{i=1}^{n} a_i \chi_{E_i}$, we define the integral of ϕ with respect to μ

by
$$\int \phi d\mu = \Sigma_1^n a_i \mu(E_i)$$

The monotone convergence theorem

If f_n is a sequence in L^+ such that $f_j \leq f_{j+1}$ for all j, and $f = \lim_{n \to \infty} f_n (= \sup_n f_n)$, then $\int f = \lim_{n \to \infty} \int f_n$.

Fatou's Lemma

If f_n is any sequence in L^+ , then $f(\liminf f_n) \leq \liminf f f_n$.

If f^+ and f^- are the positive and negative parts of f and at least one of $\int f^+$ and $\int f^-$ is finite, we define $\int f = \int f^+ - \int f^-$. We shall be mainly concerned with the case where $\int f^+$ and ff^- are both finite; we then say that f is integrable. Since $|f| = f^+ + f^-$, it is clear that f is integrable iff $\int |f| \le \infty$.

If *f* is complex-valued measurable function, we say that *f* is integrable if $\int |f| \leq \infty$.

More over, if $E \in M$, f is integrable on E if $\int_{E} |f| \le \infty$.

The space of complex-valued integrable functions is a complex vector space and that the integral is a complex-linear functional on it. We denote this space-provisionally- by $L^{1}(\mu)($ or $L^{1}(X, \mu)$, or $L^{1}(X)$, simply L^{1} , depending on the contex).

2. Real Analysis2

We shall find it more convenient to redefine $L^1(\mu)$ to be the set of equivalent classes of a.e.-defined integrable functions on *X*, where *f* and *g* are considered equivalent iff *f* = *g* a.e.

We shall still employ the notation " $f \in L^1(\mu)$ " to mean that f is an a.e.-defined integrable function.

The dominated convergence theorem.

Let $\{f_n\}$ be a sequence in L^1 such that (a) $f_n \to f$ a.e., and (b) there exists a nonnegative $g \to L^1$ such that $|f_n| \le g$ a.e. for all n. Then $f \to L^1$ and $\int f = \lim_{n \to \infty} \int f_n$.

Egoroff's theorem

Suppose that $\mu(X) < \infty$, and $f_1, f_2, ...,$ and f are measurable complex-valued functions on X such that $f_n \to f$ a.e. Then for every $\epsilon > 0$ there exists $E \subset X$ such that $\mu(E) < \epsilon$ and $f_n \to f$ uniformly on E^c .

The Fubini-Tonelli theorem.

Suppose that (X, M, μ) and (Y, N, ν) are σ -finite measure spaces. a.(Tonelli)If

 $f \in L^+(X, Y)$, then the functions $g(x) = ff_n dv$ and $h(y) = \int f^y d\mu$ are in $L^+(X)$ and

 $L^+(Y)$, respectively, and *

 $\int f d(\mu x \nu) = \int \left[\int f(x, y) d\nu \right] d\mu(x) = \int \left[\int f(x, y) d\mu \right] d\nu(y).$

b.(Fubini)If $f \in L^1(\mu x \nu)$, then $f_x \in L^1(\nu)$ for a.e. $x \in X$, $f^y \in L^1(\mu)$. for a.e. $y \in Y$, the a.e. -defined functions $g(x) = \int f_x d\nu$ and $h(y) = \int f^y d\nu$ are in $L^1(\mu)$ and $L^1(\nu)$, respectively, and (*) holds $dxdy = rdrd\theta$ and $dxdydz = r^2 \sin \phi drd\theta d\phi$

$$\int_{R_n} \exp\left(-a|x|^2\right) dx = \left(\frac{\pi}{a}\right)^{n/2}$$
$$\Gamma\left(\frac{1}{2}\right) = 2 \int_0^\infty e^{-r^2} dr = \int_{-\infty}^\infty e^{-r^2} dr = \sqrt{\pi}$$

If v is a signed measure on (X, M), a set $E \in M$ is called positive (resp.negatiive, null)

for ν if $\nu(F) \ge 0$ (resp. $\nu(F) \le 0$, $\nu(F) = 0$) for all $F \in M$ such that $F \subset E$.

The Jordan decomposition theorem

If v is a signed measuree, there exist unique positive measures v^+ and v^- such that $v = v^+ - v^-$ and $v^+ \perp v^-$.

The measures v^+ and v^- are called the positive and negative variations of v, and $v = v^+ - v^-$ is called the Jordan decomposition of v.

We define the total variation of ν to be the measure $|\nu|$ defined by $|\nu| = \nu^+ + \nu^-$.

We say that ν is absolutely continuous with respect to μ and write $\nu \ll \mu$ if $\nu(E) = 0$ for every $E \in M$ for which $\mu(E) = 0$.