1. Real Analysis

An algebra of sets on X is nonempty collection A of subsets of X that is closed under finite unions and complements; in other words, if $E_{1}, \ldots, E_{n} \in A$, then $\cup_{1}^{n} E_{j} \in A$; and if $E \in A$, then $E^{c} \in A$.

There is a unique smallest σ-algebra $M(E)$ containg E, namely, the intersection of all σ-algebras containing $E . M(E)$ is called the σ-algebra generated by E.

If X is any metric space, or more generally any topological space, the σ-algebra generated by the family of open sets in X is called the Borel σ-algebra on X and is denoted by B_{X}. Let X be a set equipped with a σ-algebra M. A measure on M is a function $\mu: M \rightarrow[0, \infty]$ such that
i. $\mu(\phi)=0$,
ii. if $\left\{E_{j}\right\}_{1}^{\infty}$ is a sequence of disjoint sets in M, then $\mu\left(\cup_{1}^{\infty} E_{j}\right)=\sum_{1}^{\infty} \mu\left(E_{j}\right)$. Property (ii) is called countable additivity. It implies finite additivity:
ii'.if E_{1}, \ldots, E_{n} are disjoint sets in M, then $\mu\left(\cup_{1}^{n} E_{j}\right)=\sum_{1}^{n} \mu\left(E_{j}\right)$, because one can take $E_{j}=\phi$ for $\mathrm{j}>\mathrm{n}$. A function μ that satisfies (i) and(ii') but not necessarily (ii) is called a finitely additive measure.

If X is a set and $M \subset P(X)$ is a σ-algebra, (X, M) is called a measurable space and the sets in M are called measurable sets. If μ is a measure on (X, M), then (X, M, μ) is called a measure space. If a statement about points $x \in X$ is true except for x in some every x. we say that it is true almost everywhere (abbreviated a.e:), or for almost every x.

A measure whose domain includes all subsets of null sets is called complete.
An outer measure on a nonempty set X is a function μ that satisfies

- $\mu^{*}(\phi)=0$
- $\mu^{*}(A) \leq \mu^{*}(B)$ if $A \subset B$.
- $\mu^{*}\left(\cup_{1}^{\infty} A_{j}\right) \leq \Sigma_{1}^{\infty} \mu^{*}\left(A_{j}\right)$.

If μ^{*} is an outer measure on X, a set $A \subset X$ is called μ^{*}-measurable if $\mu^{*}(E)=\mu^{*}(E \cap A)+$ $\mu^{*}\left(E \cap A^{c}\right)$ for all $E \subset X$.

Carathéodory's Theorem.
If μ^{*} is an outer measure on X, the collection M of μ^{*}-measurable sets is a σ-algebra, and the restriction of μ^{*} to M is a complete measure.

A large family of measures on R whose domain is the Borel σ-algebra B_{R}; such measures are called Borel measures on R.

Lebesgue measure: This is the complete measure μ_{F} associated to the function $F(x)=x$, for which the measure of an interval is simply its length. We shall denote it by m. The domain of m is called the class of Lebesgue measurable sets, and we shall denote it by L. The Cantor set C is the set of all $x \in[0,1]$ that have a base 3 expansion $x=\Sigma a_{j} 3^{-j}$ with $a_{j} \neq 1$ for all j. Thus C is obtained from [0,1] by removing the open middle third $\left(\frac{1}{3}, \frac{2}{3}\right)$, then removing the open middle thirds $\left(\frac{1}{9}, \frac{2}{9}\right)$ and $\left(\frac{7}{9}, \frac{8}{9}\right)$ of the two remaining intervals, and so forth.

We recall that any mapping $f: X \rightarrow Y$ between two sets induces a mapping $f^{-1}: P(Y) \rightarrow P(X)$, defined by $f^{-1}(E)=x \in X: f(x) \in E$, which preserves unions, intersections, and complements. Thus, if N is a σ-algebra on $Y, f^{-1}(E): E \in N$ is a σ-algebra on X. If (X, M) and (Y, N) are measurable spaces. a mapping $f: X \rightarrow Y$ is called (M, N)-measurable, or just measurable when M and N are understand, if $f^{-1}(E) \in M$ for all $E \in N$.

If (X, M) is a mesaurable space, a real- or complex-valued function f on X will be called M-measurable, or just measurable, if it is $\left(M, B_{R}\right)$ or $\left(M, B_{C}\right)$ measurable. B_{R} or B_{C} is always understood as the σ-algebra on the range space unless otherwise specified. In particular , $f \mathrm{R} \rightarrow \mathrm{C}$ is Lebesgue (resp. Borel) measurable if it is (L, B_{C}) (resp. $\left(B_{R}, B_{C}\right)$)
measurable; likewise for $f: \mathrm{R} \rightarrow \mathrm{R}$.
The characteristic function χ_{E} of E is defined by $\chi * 1$ if $x \in E, * 0$ if $x \notin E$.
A simple function on X is a finite linear combination, with complex coefficients, of characteristic functions of sets in M. Equivalently, $f: X \rightarrow \mathrm{C}$ is simple iff f is measurable and the range of f is a finite subset of C . Indeed, we have $f=\sum_{1}^{n} z_{j} \chi_{E_{j}}$, where $E_{j}=f^{-1}\left(z_{j}\right)$ and range $(f)=\left\{z_{1}, \ldots, z_{n}\right\}$
$L^{+}=$the space of all measurable functions from X to $[0, \infty]$. If ϕ is a simple function in L^{+} with standard representation $\phi=\Sigma_{1}^{n} a_{j} \chi_{E_{j}}$, we define the integral of ϕ with respect to μ by $\int \phi d \mu=\Sigma_{1}^{n} a_{j} \mu\left(E_{j}\right)$

The monotone convergence theorem
If f_{n} is a sequence in L^{+}such that $f_{j} \leq f_{j+1}$ for all j, and $f=\lim _{n \rightarrow \infty} f_{n}\left(=\sup _{n} f_{n}\right)$, then $\int f$ $=\lim _{n \rightarrow \infty} \int f_{n}$.

Fatou's Lemma

If f_{n} is any sequence in L^{+}, then $f\left(\liminf f_{n}\right) \leq \liminf f f_{n}$.
If f^{+}and f^{-}are the positive and negative parts of f and at least one of $\int f^{+}$and $\int f^{-}$is
finite, we define $\int f=\int f^{+}-\int f^{-}$. We shall be mainly concerned with the case where $\int f^{+}$and $f f^{-}$are both finite; we then say that f is integrable. Since $|f|=f^{+}+f^{-}$, it is clear that f is integrable iff $\int|f| \leq \infty$.

If f is complex-valued measurable function, we say that f is integrable if $\int|f| \leq \infty$.
More over, if $E \in M, f$ is integrable on E if $\int_{E}|f| \leq \infty$.
The space of complex-valued integrable functions is a complex vector space and that the integral is a complex-linear functional on it. We denote this space-provisionally- by $L^{1}(\mu)\left(\quad\right.$ or $L^{1}(X, \mu)$, or $L^{1}(X)$, simply L^{1}, depending on the contex).

2. Real Analysis2

We shall find it more convenient to redefine $L^{1}(\mu)$ to be the set of equivalent classes of a.e.-defined integrable functions on X, where f and g are considered equivalent iff $f=g$ a.e.

We shalll still employ the notation " $f \in L^{1}(\mu)$ " to mean that f is an a.e.-defined integrable function.

The dominated convergence theorem.
Let $\left\{f_{n}\right\}$ be a sequence in L^{1} such that (a) $f_{n} \rightarrow f$ a.e., and (b) there exists a nonnegative $g \rightarrow L^{1}$ such that $\left|f_{n}\right| \leq g$ a.e. for all n . Then $f \rightarrow L^{1}$ and $\int f=\lim _{n \rightarrow \infty} \int f_{n}$.

Egoroff's theorem

Suppose that $\mu(X)<\infty$, and f_{1}, f_{2}, \ldots, and f are measurable complex-valued functions on X such that $f_{n} \rightarrow f$ a.e. Then for every $\epsilon>0$ there exists $E \subset X$ such that $\mu(E)<\epsilon$ and $f_{n} \rightarrow f$ uniformly on E^{c}.

The Fubini-Tonelli theorem.

Suppose that (X, M, μ) and (Y, N, v) are σ-finite measure spaces. a.(Tonelli)If $f \in L^{+}(X, Y)$, then the functions $g(x)=f f_{n} \mathrm{~d} v$ and $h(y)=\int f^{y} \mathrm{~d} \mu$ are in $L^{+}(X)$ and $L^{+}(Y)$, respectively, and *
$\int f \mathrm{~d}(\mu \mathrm{x} v)=\int\left[\int f(x, y) \mathrm{d} v\right] \mathrm{d} \mu(x)=\int\left[\int f(x, y) \mathrm{d} \mu\right] \mathrm{d} v(y)$.
b.(Fubini)If $f \in L^{1}(\mu \mathrm{x} v)$, then $f_{x} \in L^{1}(v)$ for a.e. $\mathrm{x} \in X, f^{y} \in L^{1}(\mu)$. for a.e. $\mathrm{y} \in Y$, the a.e. -defined functions $g(x)=\int f_{x} \mathrm{~d} v$ and $h(y)=\int f^{y} \mathrm{~d} v$ are in $L^{1}(\mu)$ and $L^{1}(v)$, respectively, and (*) holds $d x d y=r d r d \theta$ and $d x d y d z=r^{2} \sin \phi d r d \theta d \phi$

$$
\begin{aligned}
& \int_{R_{n}} \exp \left(-\mathrm{a}|x|^{2}\right) d x=\left(\frac{\pi}{a}\right)^{n / 2} \\
& \Gamma\left(\frac{1}{2}\right)=2 \int_{0}^{\infty} e^{-r^{2}} d r=\int_{-\infty}^{\infty} e^{-r^{2}} d r=\sqrt{\pi}
\end{aligned}
$$

If v is a signed measure on (X, M), a set $E \in M$ is called positive (resp.negatiive, null)
for v if $v(F) \geq 0$ (resp. $v(F) \leq 0, v(F)=0$) for all $F \in M$ such that $F \subset E$.

The Jordan decomposition theorem
If v is a signed measuree, there exist unique positive measures v^{+}and v^{-}such that $v=$ $v^{+}-v^{-}$and $v^{+} \perp v^{-}$.

The measures v^{+}and v^{-}are called the positive and negative variations of v, and $v=v^{+}-$ v^{-}is called the Jordan decomposition of v.

We define the total variation of v to be the measure $|v|$ defined by $|v|=v^{+}+v^{-}$. We say that v is absolutely continuous with respect to μ and write $v \ll \mu$ if $v(E)=0$ for every $E \in M$ for which $\mu(E)=0$.

