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3-1 Let 𝑣 be a signed measure on (𝑥,𝑀). If {𝐸𝑗} is an increasing sequence in 𝑀, then  

𝜈(⋃ 𝐸𝑗
∞

1
) = lim

𝑗→∞
𝜈(𝐸𝑗). If {𝐸𝑗} is a decreasing sequence in 𝑀 and 𝜈(𝐸1) is finite, 

then 𝜈(⋂ 𝐸𝑗
∞

1
) = lim

𝑗→∞
𝜈(𝐸𝑗). 

 

Sol) 

For the first claim, let 𝐸0 = ∅. 

Then by countable additivity, we have 

𝜈(⋃ 𝐸𝑗
∞

1
) = 𝛴1

∞𝜈(𝐸𝑗 ∖ 𝐸𝑗−1) = 𝑙𝑖𝑚
𝑛→∞

∑ 𝜈(𝐸𝑗 ∖ 𝐸𝑗−1)
𝑛

1
 =𝑙𝑖𝑚

𝑛→∞
𝜈(𝐸𝑛) 

For the next claim, let 𝐹𝑗 = 𝐸1 ∖ 𝐸𝑗 

Then {𝐹𝑛} is an increasing sequence in 𝑚 

Also, 𝜈(𝐹𝑗) = 𝜈(𝐸1) − 𝜈(𝐸𝑗), so 𝜈(𝐹𝑗) + 𝜈(𝐸𝑗) = 𝜈(𝐸1) 

and ⋃ 𝐹𝑗
∞

1
= ⋃ (𝐸1 ∖ 𝐸𝑗)

∞

1
= 𝐸1 ∖ (⋂ 𝐸𝑗

∞

1
). 

Then, we can apply the previous claim, so we have 

𝑙𝑖𝑚
𝑗→∞

𝜈(𝐹𝑗) = 𝜈(⋃ 𝐹𝑗
∞

1
) = 𝜈 (𝐸1 ∖ (⋂ 𝐸𝑗

∞

1
)) = 𝜈(𝐸1) − 𝜈(⋂ 𝐸𝑗

∞

1
) 

Therefore 

𝜈(𝐸1) = 𝜈(⋂ 𝐸𝑗
∞

1
) + 𝑙𝑖𝑚

𝑗→∞
𝜈(𝐹𝑗) =𝜈(⋂ 𝐸𝑗

∞

1
) + 𝑙𝑖𝑚

𝑗→∞
(𝜈(𝐸1) − 𝜈(𝐸𝑗)) 

Since 𝜈(𝐸1) < ∞, subtraction it yields 

0 = 𝜈 (⋂ 𝐸𝑗
∞

1
) − 𝑙𝑖𝑚

𝑗→∞
𝜈(𝐸𝑗) 

i.e. 𝑙𝑖𝑚
𝑗→∞

𝜈(𝐸𝑗) = 𝜈(⋂ 𝐸𝑗
∞

1
), as designed 
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3-2 If𝜈 is a signed measure, 𝐸 is 𝜈 −null iff |𝜈|(𝐸)= 0. Also, if 𝑣𝑎𝑛𝑑𝜇 are signed measures, 

𝜈 ⊥ 𝜇 iff |𝜈| ⊥ 𝜇 iff 𝜈+ ⊥ 𝜇 and 𝜈− ⊥ 𝜇. 

 

Sol) 

Suppose 𝐸 is 𝜈 −null. Let X=P ∪ N be a Hahn decomposition of X with respect to 𝜈. 

Since 𝐸 is 𝜈 −null, ∀𝐹 ⊂ 𝐸 such that 𝐹 is mble, 𝜈(𝐹) = 0. 

In particular, 𝜈(𝐸 ∩ 𝑃) = 0 and 𝜈(𝐸 ∩ 𝑁) = 0. 

Thus |𝜈|(𝐸) = 𝜈+(𝐸) + 𝜈−(𝐸) =𝜈(𝐸 ∩ 𝑃) − 𝜈(𝐸 ∩ 𝑁) =0. 

Conversely, suppose |𝜈|(𝐸)= 0. Then 𝜈+(𝐸) + 𝜈−(𝐸) = 0. 

so 𝜈+(𝐸) = 𝜈−(𝐸) = 0.  

Now let 𝐹 ⊂ 𝐸 be mable. 

Then 𝜈+(𝐹) ≤  𝜈+(𝐸) = 0, and likewise 

𝜈−(𝐹) ≤  𝜈−(𝐸) = 0 so 𝜈+(𝐹) =𝜈−(𝐹) = 0. Thus 𝑣(𝐹) = 𝜈+(𝐹) - 𝜈−(𝐹) = 0 

This holds ∀𝐹 ⊂ 𝐸 mable. Hence 𝐸 is 𝜈 −null 

𝜈 ⊥ 𝜇 iff |𝜈| ⊥ 𝜇 iff 𝜈+ ⊥ 𝜇 and 𝜈− ⊥ 𝜇. 

𝜈 ⊥ 𝜇                        X 

         𝜈+ 

     𝜈 

           𝜈−     𝜇                 

𝜈+ ⊥ 𝜇 

       𝐸+                   𝐹+                                  𝐸+ ∩ 𝐸′         𝐹+ ∩ 𝐸− 

 

            𝜈+ ≡ 0 𝜇 ≡ 0 

                               𝐸−                              𝜈+ ≡ 0 𝜈− ≡ 0   𝜇 ≡ 0            

 𝜈− ⊥ 𝜇         𝑣− ≡ 0 

                                                                      𝜇 ≡ 0     𝜇 ≡ 0 

𝜇 ≡ 0          𝐹−                           𝐸+ ∩ 𝐹−         𝐹+ ∩ 𝐹−    𝜇    

 



3-3 Let 𝜈 be a signed measure on (𝑋,𝑀)  

a. 𝐿1(𝜈) = 𝐿1(|𝜈|)        

 

Sol) 

Let 𝑓 ∈ 𝐿1(𝜈) = 𝐿1(𝜈+) ∩ 𝐿1(𝜈−). so 

∫ 𝑓 𝑑𝜈+ = ∫ 𝑓 𝑑𝜈
𝑝

< ∞. Likewise ∫ 𝑓 𝑑𝜈− = −∫ 𝑓 𝑑𝜈
𝑁

> −∞ 

So ∫ 𝑓 𝑑|𝜈| = ∫ 𝑓 𝑑𝜈+ + ∫ 𝑓 𝑑𝜈− < ∞ 

Hence 𝑓 ∈ 𝐿1(|𝜈|). 

conversely, if 𝑓 ∈ 𝐿1(|𝜈|), then  ∞ > ∫ 𝑓 𝑑|𝜈| = ∫ 𝑓 𝑑𝜈+ + ∫ 𝑓 𝑑𝜈−. 

so ∫ 𝑓 𝑑𝜈+, ∫ 𝑓 𝑑𝜈− < ∞. 

so 𝐿1(𝜈+) ∩ 𝐿1(𝜈−) = 𝐿1(𝑣) as desired. 

 

b. If f∈ 𝐿1(𝜈), |∫ 𝑓 𝑑𝜈| ≤ ∫ |𝑓|𝑑|𝜈|  

 

Sol) 

Let 𝑓 ∈ 𝐿1(𝜈). then 

|∫ 𝑓 𝑑𝜈| = |∫ 𝑓 𝑑𝜈
𝑃

+ ∫ 𝑓 𝑑𝜈
𝑁

| = |∫ 𝑓 𝑑𝜈+
𝑃

− ∫ 𝑓 𝑑𝜈−
𝑁

|  

                          ≤  |∫ 𝑓 𝑑𝜈+|
𝑃

+ |∫ 𝑓 𝑑𝜈−
𝑁

| 

                          ≤  ∫ |𝑓| 𝑑𝜈+
𝑃

 + ∫ |𝑓| 𝑑𝜈−
𝑁

 

                          = ∫ |𝑓| 𝑑|𝜈| 

 

 

 

 

 

 



c. If 𝐸 ∈ 𝑀, |𝜈|(𝐸) = 𝑠𝑢𝑝{|∫ 𝑓 𝑑𝜈
𝐸

|: |𝑓| ≤ 1} 

 

Sol) 

We have |∫ 𝑓 𝑑𝜈
𝐸

| ≤ ∫ |𝑓| 𝑑|𝜈|
𝐸

 ≤ ∫ 𝑑(|𝜈|)
𝐸

= |𝜈|(𝐸) 

Taking the supremum over alll such f yields 

𝑠𝑢𝑝{|∫ 𝑓 𝑑𝜈
𝐸

|: |𝑓| ≤ 1} ≤ |𝜈|(𝐸). 

Conversely, let 𝑔 = 1𝑃 - 1𝑁. then |𝑔| ≤ 1 

and |𝜈|(𝐸) = ∫ 𝑑(|𝜈|)
𝐸

 = ∫ 𝑑𝜈+
𝐸

+ ∫ 𝑑𝜈−
𝐸

       

                      =∫ 𝑑𝜈+
𝐸∩𝑝

+ ∫ 𝑑𝜈−
𝐸∩𝑁

 

= ∫ 𝑔 𝑑𝜈
𝐸∩𝑃

− ∫ 𝑔 𝑑𝜈−
𝐸∩𝑁

 

=∫ 𝑔 𝑑𝜈
𝐸

≤  | ∫ 𝑔 𝑑𝑣|
𝐸

 

      ≤  𝑠𝑢𝑝{|∫ 𝑓 𝑑𝜈
𝐸

|: |𝑓| ≤ 1}       

Hence |𝜈|(𝐸) =𝑠𝑢𝑝{|∫ 𝑓 𝑑𝜈
𝐸

|: |𝑓| ≤ 1} 

 

 

 

 

 

 

 

 

 

 

 

 

 



용어정리-MEASURE THEORY AND INTEGRATION- BARRA 중에서 

𝑙(𝐼) for the length of 𝐼, namely b-a 

Lebesgur outer measure( outer measure) 𝑚∗(𝐴) = inf 𝛴𝑙(𝐼𝑛) 

Where the infimum is taken over all finite or countable collections of intervals [𝐼𝑛] such that 𝐴 ⊆ 𝐼𝑛 

The set 𝐸 is Lebegue measurable( measurable) if for each set 𝐴 we have  

𝑚∗(𝐴) =  𝑚∗(𝐴⋂𝐸) +𝑚∗(𝐴 ∩ 𝐸𝑐) 

As 𝑚∗ is subadditive, to prove 𝐸 is measurable we need only show, for each 𝐴, that 

𝑚∗(𝐴) ≥  𝑚∗(𝐴⋂𝐸) +𝑚∗(𝐴 ∩ 𝐸𝑐) 

A class of subsets of an arbitrary space 𝑋 is said to be a 𝜎-algebra if 𝑋 belongs to the class and 

the class is closed under the formation of countable unions and of complements 

only finite unions we obtain an algebra 

𝑀 :  the class of Lebegue measurable sets 

Let 𝐴 be a class of subsets of a space 𝑋. Then there exists a smallest 𝜎-algebra 𝑆 containing 𝐴. 

We say that 𝑆 is the 𝜎-algebra generated by 𝐴 

We denoted by 𝐵 the 𝜎-algebra generated by the class of intervals of the form [a,b); its members 

are called the Borel sets of 𝑅 ** 

𝑙𝑖𝑚 𝑠𝑢𝑝 𝐸𝑖 =⋂ ⋃ 𝐸𝑖𝑖≥𝑛

∞

1
 𝑙𝑖𝑚 𝑖𝑛𝑓 𝐸𝑖 =⋃ ⋂ 𝐸𝑖𝑖≥𝑛

∞

1
 

if 𝐸1 ⊆ 𝐸2 ⊆…, we have 𝑚(𝑙𝑖𝑚 𝐸𝑖) = 𝑙𝑖𝑚𝑚(𝐸𝑖) 

if 𝐸1 ⊇ 𝐸2 ⊇ …, and 𝑚(𝐸𝑖) < ∞ for each I, then we have 𝑚(𝑙𝑖𝑚 𝐸𝑖) = 𝑙𝑖𝑚𝑚(𝐸𝑖) 

Let 𝑓 be an extended real-valued function defined on a measurable set 𝐸 

Then 𝑓 is a Lebesgue-mesurable function (measurable function) if, for each 𝛼 ∈ 𝑅, the set  

[𝑥: 𝑓(𝑥) > 𝛼] is measurable 

** we say that the function 𝑓 is Borel measurable or a Borel function if ∀𝛼, [𝑥: 𝑓(𝑥) > 𝛼] is a Borel 

set 

Let 𝐸 be a measurable set. Then for each 𝑦 the set 𝐸 + 𝑦 =[ 𝑥 + 𝑦 : 𝑥 ∈ 𝐸] is measurable and the 

measures are the same. 

 



A non-negative finite-valued function 𝜑(𝑥), taking only a finite number of different values, is called 

a simple function. If 𝑎1, 𝑎2,… , 𝑎𝑛 are the distint values taken by 𝜑 and 𝐴𝑖 = [𝑥: 𝜑(𝑥) = 𝑎𝑖], then 

clearly 𝜑(𝑥) =∑ 𝑎𝑖𝜒𝐴𝑖(𝑥)
𝑛

1
 

The sets 𝐴𝑖 are measurable if 𝜑 is a measurable funtion 

Let 𝜑 be a measurable simple function. Then∫ 𝜑 𝑑𝑥 = ∑ 𝑎𝑖𝑚(𝐴𝑖)
𝑛
1  

where 𝑎𝑖,𝐴𝑖 , 𝑖=1,…,n are as in 𝜑(𝑥) =∑ 𝑎𝑖𝜒𝐴𝑖(𝑥)
𝑛

1
 is called the integral of 𝜑 

For any non-negative measurable function 𝑓, the integral of 𝑓, ∫ 𝑓 𝑑𝑥, is given by  

∫ 𝑓 𝑑𝑥 =sup ∫ 𝜑 𝑑𝑥, where the supremum is taken over all measurable simple funtions 𝜑, 𝜑 ≤ 𝑓. 

∫𝜑𝑑𝑥
𝐸

=∑𝑎𝑖𝑚(𝐴𝑗 ∩ 𝐸)

𝑛

1

 

∫ 𝜑𝑑𝑥
𝐴∪𝐵

= ∫𝜑𝑑𝑥
𝐴

+∫𝜑 𝑑𝑥
𝐵

 

Lebsgue’s Monotone Convergence Theorem 

Let { 𝑓𝑛, n=1,2,…} be a sequence of non-negative measurable functions such that {𝑓𝑛} is monotone 

increasing for each x. Let 𝑓 = 𝑙𝑖𝑚 𝑓𝑛. Then ∫ 𝑓 𝑑𝑥 = 𝑙𝑖𝑚 ∫ 𝑓𝑛 𝑑𝑥. 

Let 𝑓 and 𝑔 be non-negative measurable functions. Then ∫ 𝑓 𝑑𝑥 + ∫ 𝑔 𝑑𝑥 = ∫ (𝑓 + 𝑔)𝑑𝑥 

If 𝑓(𝑥) is any real fuction, 𝑓+ = 𝑚𝑎𝑥(𝑓(𝑥), 0), 𝑓−(𝑥) = 𝑚𝑎𝑥(−𝑓(𝑥), 0), are said to be the positive 

and negative parts of 𝑓, respectively 

𝑓 = 𝑓+ − 𝑓− 

|𝑓| = 𝑓+ + 𝑓−1 

𝑓+, 𝑓− ≥ 0 

f is measurable iff 𝑓+ and 𝑓−1  are both measurable 

If 𝑓 is a measurable function and ∫ 𝑓+ 𝑑𝑥 < ∞, ∫ 𝑓− 𝑑𝑥 < ∞, we say that 𝑓 is integrable and its 

integrable is given by ∫ 𝑓 𝑑𝑥 = ∫ 𝑓+ 𝑑𝑥 − ∫ 𝑓− 𝑑𝑥. 

∗ ∫ |𝑓| 𝑑𝑥 = ∫ 𝑓+ 𝑑𝑥 + ∫ 𝑓− 𝑑𝑥 

If 𝐸 is a measurable set, 𝑓 is a measurable function, and 𝜒𝐸𝑓 is integrable, we say that 𝑓 is 

integrable over E, and its integral is given by ∫ 𝑓 𝑑𝑥
𝐸

= ∫ 𝑓𝜒𝐸 𝑑𝑥. The notation 𝑓 ∈ 𝐿(𝐸) is then 

sometimes used. 

 



3-4 If 𝜈 is a signed measure and 𝜆, 𝜇 are positive measures such that 𝜈 = 𝜆 − 𝜇, then  

𝜆 ≥ 𝜈+ and 𝜇 ≥ 𝜈−. 

 

Sol) 

a) 

Let 𝑃 ∪ 𝑁 be a Hahn decomposition for 𝜈. 

Let 𝐸 ∈ 𝑀, We want to show 𝜆(𝐸) ≥ 𝜈+(𝐸), i.e.  

𝜆(𝐸 ∩ 𝑃) + 𝜆(𝐸 ∩ 𝑁) = 𝜆(𝐸) ≥ 𝜈+(𝐸)  

=(𝜆 − 𝜇)(𝑃 ∩ 𝐸) 

= 𝜆(𝑃 ∩ 𝐸) − 𝜇(𝑃 ∩ 𝐸) 

So we want to show 𝜆(𝐸 ∩ 𝑁) ≥ −𝜇(𝑃 ∩ 𝐸) 

This is trvial since 𝜇, 𝜆 ≥ 0. 

 

b) 

Let 𝑃 ∪ 𝑁 be a Hahn decomposition for 𝜈. 

Let 𝐸 ∈ 𝑀, We want to show 𝜇(𝐸) ≥ 𝑣−(𝐸). i.e.  

𝜇(𝐸 ∩ 𝑃) + 𝜇(𝐸 ∩ 𝑁) = 𝜇(𝐸) ≥ 𝑣−(𝐸) 

                         =-(𝜆 − 𝜇)(𝐸 ∩ 𝑁) 

                         =-𝜆(𝐸 ∩ 𝑁) + 𝜇(𝐸 ∩ 𝑁) 

Hence we want to show 𝜇(𝐸 ∩ 𝑃) ≥ -𝜆(𝐸 ∩ 𝑁), which is trivial. 

 

 

 

 

 

 



3-5 If 𝜈1, 𝜈2 are signed measures that both omit the value +∞ or -∞, then |𝜈1 +𝜈2| ≤ |𝜈1| + |𝑣2|. 

 

Sol) 

Since 𝜈1, 𝜈2 both omit either +∞ or -∞,  

so we can write 𝜈1 + 𝜈2 = (𝜈1
+ −𝜈1

−) + (𝜈2
+ − 𝜈2

−)  

                       =(𝜈1
++ 𝜈2

+) – (𝜈1
−+𝜈2

−) 

                        =:𝜆 − 𝜇 

By exercise4, 

𝜆 ≥ (𝑣1 + 𝜈2)
+ and 𝜇 ≥ (𝜈1 + 𝜈2)

−. so 

|𝜈1| + |𝑣2| = 𝜈1
++ 𝜈1

− + 𝜈2
++𝜈2

− = 𝜆 − 𝜇 

                               ≥ (𝜈1 + 𝜈2)
+ + (𝜈1 + 𝜈2)

− 

                                = |𝜈1 + 𝜈2| 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3-6 Suppose 𝜈(𝐸) = ∫ 𝑓 𝑑𝑢 where 𝜇 is a positive measure and 𝑓 is an extended𝜇-integrable 

function. Describe the Hahn decomposition of 𝜈 and the positive, negative, and total variations of 

𝜈 in terms of 𝑓 and 𝜇. 

 

Sol) 

I claim P={𝑓 ≥ 0}, N={𝑓 < 0}, 𝜈+ = 𝑓+ 𝑑𝜇, 𝜈− = 𝑓− 𝑑𝜇, and |𝜈| = |𝑓| 𝑑𝜇. 

WLOG, assume ∫ 𝑓− 𝑑𝜇 < ∞. 

Now 𝑃 ∪ 𝑁=X and 𝑃 ∩ 𝑁 =∅.  

Also, 𝐸 ⊂ 𝑃 => 𝜈(𝐸 ∩ 𝑃) = ∫ 𝑓 𝑑𝜇
𝐸∩𝑝

 = ∫ 𝑓+ 𝑑𝜇
𝐸∩𝑝

 ≥ 0, 

and 𝐸 ⊂ 𝑁  => 𝜈(𝐸 ∩ 𝑁) =∫ 𝑓 𝑑𝜇
𝐸∩𝑁

 =−∫ 𝑓− 𝑑𝜇
𝐸∩𝑁

 ≤ 0. so 

P is positive set and N is a negative set. Hence P∪N is a Haha decomposition of X. 

with respect to 𝜈. Next, ∀𝐸 ∈ 𝑀,  

𝜈+(𝐸) = ∫ 𝑓 𝑑𝜇
𝐸∩𝑃

 =∫ 𝑓+ 𝑑𝜇
𝐸∩𝑝

  = ∫ 𝑓+ 𝑑𝜇
𝐸

,  

so 𝜈+ = 𝑓+ 𝑑𝜇. 

likewise, ∀𝐸 ∈ 𝑀,  

𝜈−(𝐸) = 𝜈+(𝐸) − 𝜈(𝐸) = ∫ 𝑓+ 𝑑𝑢
𝐸

 -∫ 𝑓 𝑑𝑢
𝐸

 = ∫ 𝑓
𝐸∩𝑝

𝑑𝑢 -∫ 𝑓 𝑑𝑢
𝐸

 = ∫ −𝑓
𝐸∩𝑁

𝑑𝑢 =∫ 𝑓− 𝑑𝜇
𝐸

  

so 𝜈− = 𝑓− 𝑑𝜇.  

Furthermore, , ∀𝐸 ∈ 𝑀, 

|𝜈|(𝐸) = 𝜈+(𝐸) + 𝜈−(𝐸) = ∫ 𝑓+ 𝑑𝜇
𝐸

 + ∫ 𝑓− 𝑑𝜇
𝐸

 = ∫ 𝑓+ + 𝑓− 𝑑𝜇
𝐸

 = ∫ |𝑓| 𝑑𝜇
𝐸

. 

so |𝜈| = |𝑓| 𝑑𝜇 

 

 

 

 

 

 



3-7 Suppose that 𝜈 is a signed measure on (𝑋,𝑀) and 𝐸 ∈ 𝑀. 

a. 𝜈+(𝐸) = sup { 𝜈(𝐹) : 𝐹 ∈ 𝑀, 𝐹 ⊂ 𝐸} and 𝜈−(𝐸) = -inf{𝜈(𝐹) : 𝐹 ∈ 𝑀, 𝐹 ⊂ 𝐸} 

 

Sol) 

Let 𝑋 = 𝑃 ∪ 𝑁. Let 𝐸𝜖𝑀. Then 𝜈+(𝐸) = 𝜈(𝐸 ∩ 𝑃) ≤ sup { 𝜈(𝐹): 𝐹 ∈ 𝑀, 𝐹 ⊂ 𝐸}. 

Also, if 𝐹 ⊂ 𝐸, then 𝐹 ∩ 𝑃 ⊂ 𝐸 ∩ 𝑃,  

so 𝜈(𝐹) = 𝜈(𝐹 ∩ 𝑃) +𝜈(𝐹 ∩ 𝑁) ≤ 𝜈(𝐹 ∩ 𝑃) =𝜈+(𝐹) ≤ 𝜈+(𝐸). 

Taking the supremum ove all such 𝐹 yeilds 

sup { 𝜈(𝐹) :  𝐹 ⊂ 𝐸 } ≤ 𝜈+(𝐸).  

Hence = holds. 

As for 𝜈−, we have 𝜈−(𝐸) = −𝜈(𝐸 ∩ 𝑁) ≤ -inf { 𝜈(𝐹) : 𝐹 ⊂ 𝐸}. 

Next, if 𝐹 ⊂ 𝐸, then 𝐹 ∩ 𝑁 ⊂ 𝐸 ∩ 𝑁, so 

𝜈(𝐹) = 𝜈(𝐹 ∩ 𝑃) +𝜈(𝐹 ∩ 𝑁) ≥ 𝜈(𝐹 ∩ 𝑁) = -𝜈−(𝐹) ≥ -𝜈−(𝐸) 

So 𝜈−(𝐸) ≤ −𝜈(𝐹)  

So 𝜈−(𝐸) ≤ sup { −𝜈(𝐹) :  𝐹 ⊂ 𝐸 } = -inf {𝜈(𝐹) :  𝐹 ⊂ 𝐸} 

Hence = holds. 

 

 

 

 

 

 

 

 

 

 



b.|𝜈|(𝐸) = sup { ∑ |𝜈(𝐸𝑗)|
𝑛

1
 :𝑛𝜖ℕ, 𝐸1, … , 𝐸𝑛 are disjoint, and ∪1

𝑛 𝐸𝑗 = 𝐸} 

 

Sol) 

First,  sup { ∑ |𝜈(𝐸𝑗)|
𝑛

1
 : 𝑛𝜖ℕ, 𝐸1, … , 𝐸𝑛 are disjoint, and ∪1

𝑛 𝐸𝑗 = 𝐸} ≥ |𝜈(𝐸 ∩ 𝑃)| + |𝜈(𝐸 ∩ 𝑁)| 

                                                                 =𝜈+(𝐸) + |−𝜈−(𝐸)|  

                                                                 =|𝜈|(𝐸)   

 

Conversely, let 𝐸 = ⋃ 𝐸𝑗
𝜂

1
.  

Then |𝑣|(𝐸) = |𝜈|(⋃ 𝐸𝑗
𝑛

1
) = ∑ |𝜈|(𝐸𝑗)

𝑛

1
 = ∑ (𝜈+(𝐸𝑗) + 𝜈−(𝐸𝑗))

𝑛

1
 

≥ ∑ (𝜈+(𝐸𝑗) − 𝜈−(𝐸𝑗))
𝑛

1
  

= ∑ |𝜈(𝐸𝑗)|
𝑛

1
. 

so taking supremum over all such (𝐸𝑗)1
𝑛
 yields  

|𝜈|(𝐸) ≥ sup {∑ |𝜈(𝐸𝑗)|
𝑛

1
 :𝑛𝜖ℕ, 𝐸1, … , 𝐸𝑛 are disjoint, and ∪1

𝑛 𝐸𝑗 = 𝐸} 

Thus = holds. 

 

 

 

 

 

 

 

 

 

 

 



용어 정리2- 뒤에서 앞으로 

The Lebegue Radon Nicodym Theorem 

Let 𝜈 be a 𝜎 finite signed measure and 𝜇 a 𝜎 finite positive measure on (𝑋,𝑀) 

There exist unique 𝝈 finite signed measure 𝜆 ⊥ 𝜇 , 𝜌 ≪ 𝜇 , and 𝜈 = 𝜆 + 𝜌. 

Moreover, there is an extended 𝝁 integrable function 𝒇: 𝑋 → ℝ such that 𝑑𝜌 = 𝑓 𝑑𝜇, 

and any two such functions are equal 𝜇𝑎. 𝑒. 

 

Theorem 

Let 𝜈  be a finite measure and 𝜇 a positive measure on (𝑋,𝑀). 

Then 𝜈 ≪ 𝜇 iff for every 휀 > 0 there exists 𝛿 > 0 such that |𝜈(𝐸)| < 휀 whenever 𝜇(𝐸) < 𝛿. 

 

Corollary 

If 𝑓 ∈ 𝐿1(𝜇), for every 휀 > 0 there exists 𝛿 > 0 such that |∫ 𝑓 𝑑𝜇
𝐸

| < 휀 whenever 𝜇(𝐸) < 𝛿. 

 

𝜈 is a signed measure and 𝜇 is a positive measure on (𝑋,𝑀).  

We say that 𝜈 is absolutely continuous with respect to 𝜇 and write 𝜈 ≪ 𝜇 

if 𝜈(𝐸) = 0 for every 𝐸 ∈ 𝑀 for which 𝜇(𝐸) = 0  

It is easily verified that 𝜈 ≪ 𝜇 iff |𝜈| ≪ 𝜇 iff 𝜈+ ≪ 𝜇 and 𝜈− ≪ 𝜇. 

 

Integration with respect to a signed measure 𝜈 is defined in the obvious way: We set 

𝐿1(𝜈) =  𝐿1(𝜈+) ∩𝐿1(𝜈−) 

∫ 𝑓 𝑑𝜈 = ∫ 𝑓 𝑑𝜈+ - ∫ 𝑓 𝑑𝜈− ( 𝑓𝜖𝐿1(𝑣)) 

 

 

 

 



The Jordan Decomposition Theorem 

If 𝜈 is a signed measure, there exist unique positive measures 𝜈+ and  𝜈− such that 

𝜈 = 𝜈+ − 𝜈− and 𝜈+ ⊥ 𝜈− 

 

𝜈+ positive variation of 𝜈 

𝑣− negative variation of 𝜈 

𝜈 = 𝜈+ − 𝜈− Jordan decomposition of 𝜈 

|𝜈| = 𝜈+ +𝜈− total variation of 𝜈 

 

𝜈 null iff |𝜈|(𝐸) = 0 , and  𝜈 ⊥ 𝜇 iff |𝜈| ⊥ 𝜇 iff 𝜈+ ⊥ 𝜇 and 𝜈− ⊥ 𝜇 

 

If 𝜈 is a signed measure on (𝑋,𝑀), a set 𝐸 ∈ 𝑀 is called  

positive for 𝜈 if 𝜈(𝐹) ≥ 0 

negative for 𝜈 if 𝜈(𝐹) ≤ 0 

null for 𝜈 if 𝜈(𝐹) = 0 for all 𝐹 ∈ 𝑀 such that 𝐹 ⊂ 𝐸 

 

Thus, in the example 𝜈(𝐸) =∫ 𝑓 𝑑𝜇
𝐸

 described above,  

𝐸 is positive when 𝑓 ≥ 0 

negative when 𝑓 ≤ 0 

or null precisely when 𝑓 = 0 𝜇 a.e. on 𝐸 

 

 

 

 

 

 



First, if 𝜇1, 𝜇2 are measures on 𝑀 and at least one of them is finite, then 𝜈 = 𝜇1 − 𝜇2 is a signed 

measure. 

Second, if 𝜇 is a measure on 𝑀 and 𝑓 ∶ 𝑋 → [−∞,∞] is a measurable fuction such that at least 

one of ∫ 𝑓+ 𝑑𝜇 and ∫ 𝑓− 𝑑𝜇 is finite 

we shall call 𝑓 an extended 𝜇 integrable function 

the set function 𝜈 defined by 𝜈(𝐸) = ∫ 𝑓 𝑑𝜇
𝐸

 

 

Let (𝑋,𝑀) be a measurable space. A signed measure on (𝑋,𝑀) is a function 

𝜈:𝑀 → [−∞,∞] such that 

𝜈(𝜙) = 0 

𝜈 assumes at most one of the values ±∞ 

if {𝐸𝑗} is a sequence of disjoint sets in 𝑀, then 𝜈(⋃ 𝐸𝑗
∞

1
) = ∑ 𝜈(𝐸𝑗)

∞

𝑖
, 

where the latter sum converges absolutely if 𝜈(⋃ 𝐸𝑗
∞

1
) is finite 

Thus every measure is a signed measure 

we shall sometimes refer to measures as positive measures. 

 

|𝜈|(𝐸) = 𝑣+(𝐸) + 𝜈−(𝐸) 

𝑣+(𝐸) =  ∫ 𝑓+ 𝑑𝜇
𝐸

   

𝜈−(𝐸)  = ∫ 𝑓− 𝑑𝜇
𝐸

 

𝑓+ + 𝑓− = |𝑓| 

∫ 𝑓 𝑑𝜈
𝑃

= ∫ 𝑓 𝑑𝜈+
𝑃

   

∫ 𝑓 𝑑𝜈
𝑁

= −∫𝑓 𝑑𝜈−

𝑁

 

|𝜈|(𝐸) = 𝑣+(𝐸) + 𝜈−(𝐸) = ∫ 𝑓 𝑑|𝜈| =∫ 𝑓 𝑑𝜈+ + ∫ 𝑓 𝑑𝜈− 

 

a.|𝜈|(𝐸) = 𝑣+(𝐸) + 𝜈−(𝐸) = ∫ 𝑓 𝑑|𝜈| =∫ 𝑓 𝑑𝜈+ + ∫ 𝑓 𝑑𝜈− 

b.𝜈 = 𝜈+ − 𝜈− = ∫ 𝑓 𝑑𝜈 = ∫ 𝑓 𝑑𝜈+ - ∫ 𝑓 𝑑𝜈− 

 



Radon-Nikodym theorem 

The Radon Nikodym theorem involves a measurable space (𝑋, 𝛴) on which two 𝜎 finite measurea 

are defined, 𝜇 and 𝜈. It states that, if 𝜈 ≪ 𝑢, then there exists a 𝛴 measurable function 

𝑓: 𝑋 → [0,∞), such that for any measurable set 𝐴 ⊂ 𝑋, 

𝜈(𝐴) = ∫ 𝑓 𝑑𝜇
𝐴

. 

 

The function 𝑓 satisfying the above equality is uniquely defined up to a 𝜇 null set, that is, if 𝑔 is 

another function which the same property, then 𝑓 = 𝑔 𝜇 almost everywhere. 

 

Extension to signed measure 

A similar theorem can be proven for signed measure; namely, that if 𝜇 is a nonnegative 𝜎 finite 

measure, and𝜈 is a finite valued signed measure such that 𝜈 ≪ 𝑢, that is 𝜈 is absolutely 

continuous with respect to 𝜇, then there ia a 𝜇 integrable real valued function 𝑔 on 𝑋 such that 

for every measurable set 𝐴, 

𝜈(𝐴) = ∫ 𝑔 𝑑𝜇
𝐴

. 

 

 

 

 

 

 

 

 

 

 

 

 



용어정리3 

Measure Mesurable function Generated 𝝈-algebra Measurable space Measure space  

Signed measure 𝝈-algebra algebra  

 

Let 𝑋 be a set equipped with a 𝜎-algebra 𝑀. 

A measure on 𝑀 is a function 𝜇 : 𝑀 → [0,∞] such that  

⚫ 𝜇(𝜙) =0 (1) 

⚫ if {𝐸𝑗}1
∞ is sequence of disjoint sets in 𝑀, then 𝜇(⋃ 𝐸𝑗

∞

1
) = 𝛴1

∞𝜇(𝐸𝑗) (2) 

(2) is called countable additivity 

It implies finite additivity 

⚫ if 𝐸1, …𝐸𝑛 are disjoint sets in 𝑀, then 𝜇(⋃ 𝐸𝑗
𝑛

1
) = 𝛴1

𝑛𝜇(𝐸𝑗) (3) 

because one can take 𝐸𝑗 = 𝜙 for 𝑗 > 𝑛. 

A function 𝜇 that satisfies (1) and (3) but not necessarily (2) is called a finitely additive measure 

 

If 𝑋 is a set and 𝑀 ⊂ 𝑃(𝑋) is a 𝜎-algebra, (𝑋,𝑀) is called a measurable space 

and the sets in 𝑀 are called measurable sets 

If 𝜇 is a measure on (𝑋,𝑀), then (𝑋,𝑀, 𝜇) is called a measure space 

 

We recall that any mapping 𝑓: 𝑋 → 𝑌 between two sets induces a mapping 

𝑓−1: 𝑃(𝑌) → 𝑃(𝑋), defined by 𝑓−1(𝐸) = { 𝑥 ∈ 𝑋 : 𝑓(𝑥) ∈ 𝐸 }, 

which preserves unions, intersections, and complements. 

If (𝑋,𝑀)and (𝑌, 𝑁) are measurable spaces, a mapping 𝑓:𝑋 → 𝑌 is called (𝑀,𝑁)-measureable, or  

just measurable when 𝑀 and 𝑁 are understood, if 𝑓−1(𝐸) ∈ 𝑀 for all 𝐸 ∈ 𝑁 

 

 

 



We now examine the most important measure on ℝ, namely, Lebegue measure: 

This is the complete measure 𝜇𝐹 associated to the function 𝐹(𝑥) = 𝑥, 

for which 𝑚 is called the class of Lebegue measurable sets, and shall denoted it by ℒ 

We shall also refer to the restriction of 𝑚 to 𝐵ℝ as Lebegue measure 

 

Our first applications of Caratheodory’s theorem will be in the context of extending measures  

from algebras to 𝜎-algebras. More precisely, if 𝐴 ⊂ 𝑃(𝑋) is an algebra, a function 

𝜇0 : 𝐴 → [0,∞] will be called a premeasure if 

⚫ 𝜇0(𝜙) =0 

⚫ if {𝐴𝑗}1
∞ is a sequence of disjoint sets in 𝐴 such that ⋃ 𝐴𝑗

∞

1
 ∈ 𝐴, then 

𝜇0(⋃ 𝐴𝑗
∞

1
) = 𝛴1

∞𝜇0(𝐴𝑗) 

In particular, a premeasure is finitely additive since one can take 𝐴𝑗 = 𝜙 for 𝑗 large. 

The notions of finite and 𝜎-finite premeasures are defined just as for measures 

 

The abstract generalization of the notion of outer area is as follows. 

An outer measure on a nonempty set 𝑋 is a function 𝜇∗ : P(𝑋) → [0,∞] that satisfies 

⚫ 𝜇∗(𝜙)=0 

⚫ 𝜇∗(𝐴) ≤ 𝜇∗(𝐵) if 𝐴 ⊂ 𝐵 

⚫ 𝜇∗(⋃ 𝐴𝑗
∞

1
) ≤𝛴1

∞𝜇∗(𝐴𝑗) 

 

 

 

 



Let (𝑋,𝑀) be a measurable space.  

A signed measure on (𝑋,𝑀) is a function 𝑣 : 𝑀 → [-∞,∞]such that 

⚫ 𝑣(𝜙) = 0 

⚫ 𝜈 assumes at most one of the values ± ∞ 

⚫ if {𝐸𝑗} is a sequence of disjoint sets in 𝑀, then 𝜈( ⋃ 𝐸𝑗
∞

1
) = 𝛴1

∞𝜈(𝐸𝑗) 

where the latter sum converges absolutely if 𝜈( ⋃ 𝐸𝑗
∞

1
) is finite 

 

The most common way to obtain outer measure is to start with a family 휀 of “elementary sets” 

on which a notion of measure of defined and then to approximate arbitrary sets “from the  

outside” by countable unions of members of 휀 

 

The measure �̅� is called the completion of 𝜇, and �̅� is called the completion of 𝑀 with respect  

to 𝜇 

 

If (𝑥,𝑀, 𝜇) is a mesure space, a set 𝐸 ∈ 𝑀 such that 𝜇(𝐸)=0 is called a null set 

By subadditivity, any countable union of null sets is a null set, a fact which we shall use frequently 

If a statement about points 𝑥 ∈ 𝑋 is true except for 𝑥 in some null set. we say that it is true  

almost everywhere (abbreviated a.e.) or for almost every 𝑥. 

(If more precision is needed, we shall speak of a 𝜇-null set, or 𝜇-almost everywhere) 

 

 

 



If 𝜇(𝐸)=0 and 𝐹 ⊂ 𝐸, then 𝜇(𝐹) = 0 by monotonicity provided that 𝐹 ∈ 𝑀, but in general it need  

not be true that 𝐹 ∈ 𝑀. A measure whose domain includes all subsets of null sets is called  

complete. 

 

Let 𝑋 be a nonempty set. An algebra of sets on 𝑋 is a nonempty collection 𝐴 of subsets of 𝑋 

that is closed under finite unions and complements; in other words,  

if 𝐸1,…,𝐸𝑛 ∈ 𝐴, then ⋃ 𝐸𝑗
𝑛

1
 ∈ 𝐴 ; and if 𝐸 ∈ 𝐴, then 𝐸𝐶 ∈ 𝐴. 

A 𝜎-algebra is an algebra that is closed under countable unions. 

 

It is trivial to verify that the intersection of any family of 𝜎-algebras on 𝑋 is againa a𝜎-algebra. 

It follows that if휀 is any subset of 𝑃(𝑋), there is a unique smallest 𝜎-algebra 𝑀(휀) 

containing휀, namely, the intersection of all 𝜎-algebras containing 휀. 

(There is always at least one such, namely, 𝑃(𝑋).) 𝑀(휀) is called the 𝜎-algebra generated by휀. 

 

 

 

 

 

 

 

 

 

 



3-8 𝜈 ≪ 𝜇 iff |𝜈| ≪ 𝜇 iff 𝜈+ ≪ 𝜇 and 𝜈− ≪ 𝜇 

 

Sol) 

We will prove 𝜈 ≪ 𝜇 ⇒ 𝜈+ ≪ 𝜇 and 𝜈− ≪ 𝜇  ⇒ |𝜈| ≪ 𝜇  ⇒ 𝜈 ≪ 𝜇 

Thoughout this problem, let X= 𝑃 ∪ 𝑁, and 𝐸 ∈ 𝑀 such that 𝜇(𝐸)=0 

First, let 𝜈 ≪ 𝜇. Then given 𝐸 as above, 𝜇(𝐸)=0, so 𝜈(𝐸) = 0. 

so 𝜈+(𝐸) = 𝜈(𝐸 ∩ 𝑃) ≤ 𝜇(𝐸) = 0 

Also, 𝜈−(𝐸) =−𝜈(𝐸 ∩ 𝑁) ≤ −𝜇(𝐸) = 0 

So 𝜈+(𝐸) = 𝜈−(𝐸) = 0 

and so 𝜈+ ≪ 𝜇, 𝜈− ≪ 𝜇 

Next, if 𝜈+ ≪ 𝜇 and 𝜈− ≪ 𝜇 then 𝜈+(𝐸) = 𝜈−(𝐸) = 0 

Then |𝜈|(𝐸) = 𝜈+(𝐸) + 𝜈−(𝐸) = 0, 

as desired finally, if |𝜈| ≪ 𝜇, then 𝜈+(𝐸) + 𝜈−(𝐸) = 0. 

so 𝜈+(𝐸) = 𝜈−(𝐸) = 0, and so  𝜈(𝐸) = 𝜈+(𝐸) - 𝜈−(𝐸) = 0 

Hence 𝜈 ≪ 𝜇. Therefore, the statements are equivalent 

 

 

3-9 Suppose {𝜈𝑗} is a sequence of positive measures. If 𝜈𝑗 ⊥ 𝜇 for all 𝑗, then 𝛴1
∞𝜈𝑗 ⊥ 𝜇 ; and 

if 𝜈𝑗 ≪ 𝜇 for all 𝑗, then 𝛴1
∞𝜈𝑗 ≪ 𝜇. 

 

Sol) 

For the first part, for each 𝑗 ∈ ℕ (∌ 0) 

let 𝑋 = 𝑁𝑗 ∪𝑀𝑗 where 𝜈𝑗 lives on 𝑁𝑗 and 𝜇 lives on 𝑀𝑗 

Let 𝜈 = 𝛴1
∞𝜈𝑗 . Then 𝜈 is a measure 

𝜈(𝜙) = ∑ 𝜈𝑗(𝜙)
∞

1
 = 𝛴1

∞0 = 0, and 



if (𝐸𝑗) disjoint, 𝜈(⋃𝐸𝑗) =  ∑ 𝜈𝑛 (⋃ 𝐸𝑗
∞

𝑗=1
)

∞

𝑛=1
 

                     = 𝛴𝑛=1
∞ 𝛴𝑗=1

∞ 𝜈𝑛(𝐸𝑗) 

                     =𝛴𝑗=1
∞ 𝛴𝑛=1

∞ 𝜈𝑛(𝐸𝑗) 

= 𝛴𝑗=1
∞ 𝜈(𝐸𝑗) 

Now that we know 𝜈 is a measure, 

Let 𝑁 = ⋃ 𝑁𝑗
∞

1
 and 𝑀 = ⋂ 𝑀𝑗

∞

1
 

I claim 𝜇 lives on 𝑀, 𝜈 on 𝑁 

Let 𝐸 ⊂ 𝑁. then ∀𝑗 ∈ ℕ, 𝜇(𝐸 ∩ 𝑁𝑗) = 0. 

So 𝜇(𝐸) ≤ 𝜇(⋃ 𝐸∞
1 ∩ 𝑁𝑗) 

        =𝛴1
∞𝜇(𝐸 ∩ 𝑁𝑗)  

=𝛴1
∞0 

= 0 

Thus 𝑁 is null for 𝜇. Also ∀𝐸 ⊂ 𝑀, 𝐸 ⊂ 𝑀 

∀𝑗 ∈ ℕ, so 𝜈𝑗(𝐸) = 0. 

Thus 𝜈(𝐸) = 𝛴1
∞𝜈𝑗(𝐸) = 𝛴1

∞0 = 0 

So 𝑀 is null for 𝜈 

Also, 𝑁 ∪𝑀 = 𝑋. Hence 𝜈 ⊥ 𝜇 

For the second part, Suppose 𝜈𝑗 ≪ 𝜇 ∀𝑗 ∈ ℕ 

Then 𝜈𝑗(𝐸) = 0 ∀𝑗 

So 𝜈(𝐸) = ∑ 𝜈𝑛(𝐸𝑛)
∞
1  = 0 

 

 

 

 

 



3-10 Theorem 3.5 may fail when 𝜈 is not finite.( Consider 𝑑𝜈(𝑥) = 𝑑𝑥 𝑥⁄  and 𝑑𝜇(𝑥) = 𝑑𝑥 on 

(0,1), or 𝜈 = counting measure and 𝜇(𝐸) = ∑ 2−𝑛𝑛∈𝐸  on ℕ.) 

 

Sol) 

 

 

 

 

 

 

 


