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3-1 Let v be a signed measure on (x,M). If {E;} is an increasing sequence in M, then

v(U7E) = }grgov(Ej) If {E;} is a decreasing sequence in M and v(E,) is finite,

then v((1;'E)) = lim v(E)).

Sol)

For the first claim, let E, = @.

Then by countable additivity, we have

v(UT B) = 2P v(Ej \Ema) = lim Y0v(E \ Ejy) =lim v(E,)
For the next claim, let F; = E; \ E;

Then {F,} is an increasing sequence in m

Also, v(F;) = v(E,) — v(E;), so v(F;) + v(E;) = v(E;)

and UTF = U7 (B \E) = E\ (N] E).

Then, we can apply the previous claim, so we have

limv(F) =v(U7F) = v(E\ (N7 E)) = vE) -v(N]E)
Therefore

v(E) = (] E) + limv(F) =v(] E) + lim (v(E) ~ v(E)))
Since v(E;) < o, subtraction it yields

o=v([,5)- vt

ie. limv(E;) = v([, E;), as designed
jooo
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3-2 Ifv is a signed measure, E is v —null iff |v|(E)= 0. Also, if vand u are signed measures,

vipiff [v]Lu iff vt Ly and v~ L.

Sol)

Suppose E is v —null. Let X=P U N be a Hahn decomposition of X with respect to v.
Since E is v —null, VF c E such that F is mble, v(F) = 0.

In particular, v(ENP) = 0and v(ENN) = 0.

Thus |v|(E) =v*(E) + v (E) =v(EnP) —v(ENN) =0.

Conversely, suppose |[v[(E)= 0. Then v*(E) + v (E) = 0.

so vit(E) = v (E) =0.

Now let F c E be mable.

Then v*(F) < v*(E) =0, and likewise

v (F) < v (E) =0so v*(F) = v (F) =0.Thus v(F) = v*(F) - v (F) =0
This holds VF c E mable. Hence E is v —null

v Lp iff [v|Lu iff vt Ly and v~ 1.

viu X




Let v be a signed measure on (X, M)

') = L'(IvD)

Sol)

Let f e L'(v) = L*(v*) N L'(v7). so

[favt=[ fdv<oo. Likewise [ fdv™ =~ [ fdv>—o

So [fdlvl=[fdvt+[fdv <o

Hence f € L'(|v]).

conversely, if f € L'(Jv]), then o> [fdlv| = [fdv*+ [ fdv .
so [fdv*, [fdv™ <.

so *(vH) NnL'(v™) = L*(v) as desired.

If fe L'v), |f fdv| < [IfldIvl

Sol)
Let f € L'(v). then

|[fav|=|[,fav+ [ fav| = |[,fav* = [, fdv|
< |[Lfavti+1[,fdv]

IA

LIfldve + [Ifldv-
[Ifldivl



If E€eM, |v|(E) =sup{|fEfdv|:|f| <1}

Sol)
We have |[ . fdv|< [Ifldlv] < [.d(lv]) = [vI(E)
Taking the supremum over alll such f yields
sup{| [, f av]:If < 1} < IvI(E).
Conversely, let g =1, - 1y.then |g]| <1
and V|(E) = [d(lv]) = [ dv*+ [ dv™
= fEnp dvt + fEnN dv~
= Jenp 94V~ Jean g dv”
=[,gdv < |[,gdv]
< sup{|fEfdv|: Ifl <1}

Hence |VI(E) = sup{|[,fdv|:|fl <1}
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I(I) for the length of I, namely b-a

Lebesgur outer measure( outer measure) m*(4) = inf X I(I,,)

Where the infimum is taken over all finite or countable collections of intervals [I,,] such that A< I,
The set E is Lebegue measurable( measurable) if for each set A we have

m'(A) = m"(ANE) + m*(ANE®)

As m* is subadditive, to prove E is measurable we need only show, for each A4, that
m*(A) = m'(ANE) + m*(A N E®)

A class of subsets of an arbitrary space X is said to be a o-algebra if X belongs to the class and

the class is closed under the formation of countable unions and of complements

only finite unions we obtain an algebra

M : the class of Lebegue measurable sets

Let A be a class of subsets of a space X. Then there exists a smallest o-algebra S containing A.
We say that S is the o-algebra generated by A

We denoted by B the c-algebra generated by the class of intervals of the form [a,b); its members

are called the Borel sets of R **

lim sup Ei = ﬂl Uiani lim lnf Ei = U1 nizn Ei

if E, CE, C.., we have m(limE;) = limm(E;)

if E,2E, 2 .., and m(E;) < o for each |, then we have m(limE;) = limm(E;)

Let f be an extended real-valued function defined on a measurable set E

Then f is a Lebesgue-mesurable function (measurable function) if, for each « € R, the set
[x: f(x) > a] is measurable

** we say that the function f is Borel measurable or a Borel function if Ve, [x: f(x) > a] is a Borel

set

Let E be a measurable set. Then for each y theset E+y =[ x+y : x € E] is measurable and the

measures are the same.



A non-negative finite-valued function ¢(x), taking only a finite number of different values, is called

a simple function. If ay,a, ...,a, are the distint values taken by ¢ and A; = [x:¢(x) = a;], then

n
clearly ¢(x) = ) ats, ()
1
The sets A; are measurable if ¢ is a measurable funtion

Let ¢ be a measurable simple function. Then [ ¢ dx = ¥Ta;m(4;)

n

where a; A;, i=1,..,n are asin @(x) = Z aixa,(x) is called the integral of ¢
1

For any non-negative measurable function £, the integral of f, [ fdx, is given by

[ fdx =sup [ @dx, where the supremum is taken over all measurable simple funtions ¢,¢ < f.

n

J-(pdx =Zaim(A]- NE)
E T

(pdx=f<pdx+ J-(pdx
A B

AUB

Lebsgue’'s Monotone Convergence Theorem

Let { f,, n=1,2,...} be a sequence of non-negative measurable functions such that {f,} is monotone

increasing for each x. Let f =lim f,. Then [ fdx = lim [ f, dx.
Let f and g be non-negative measurable functions. Then [ fdx+ [ gdx = [ (f + g) dx

If f(x) is any real fuction, f* = max(f(x),0), f~(x) = max(—f(x),0), are said to be the positive
and negative parts of f, respectively

f=rr—f

Ifl=f*+f"

frfm=zo0

fis measurable iff f* and f~! are both measurable

If £ is a measurable function and [ f*dx < o, [ f~dx < oo, we say that f is integrable and its

integrable is given by [ fdx = [f*tdx— [ f~dx.

« [Ifldx=[f*dx+[fdx

If E is a measurable set, f is a measurable function, and ygf is integrable, we say that f is
integrable over E, and its integral is given by [ fdx = [ fxgdx. The notation f € L(E) is then

sometimes used.



If v is a signed measure and A, u are positive measures such that v =21 — g, then

Azvtand u=v-.

Sol)
a)
Let PUN be a Hahn decomposition for v.

Let E € M, We want to show A(E) =v*(E), i.e.
AMENP)+AMENN) =AE) =vi(E)
=A-wPnE)
=AMPNE)—uPNE)
So we want to show A(ENN) = —u(PNE)

This is trvial since u, A > 0.

b)
Let PUN be a Hahn decomposition for v.

Let E € M, We want to show u(E) = v~ (E). i.e.

HENP)+puENN) =pE) = v (E)
=@A-wENN)
=-AM(ENN)+u(ENN)

Hence we want to show u(E nP) = -A(E n N), which is trivial.



If v;, v, are signed measures that both omit the value +o or -oo, then |v; + v,| < |v;| + |v,].

Sol)

Since v;, v, both omit either +c0 or -oo,

so we can write v; +v, = (Vi — vy) + (v —v3)
=+ vi) = (v + vy)
=A—-u

By exercise4,

A=, +vy)" and u= (v; +v,)". so

[vil+ v, = vi+vi +vi+v; =2A—u
1 2 1 1 2 2

v

(vi+v) 4+ (v +vy)”

= vy + vyl



Suppose v(E) = [ f du where u is a positive measure and f is an extended u-integrable
function. Describe the Hahn decomposition of v and the positive, negative, and total variations of

v in terms of f and pu.

Sol)

| claim P={f = 0}, N={f < 0}, vt = f*dy, v- = fdy, and |v| =|f|dp.

WLOG, assume [ f~du < o.

Now PUN=Xand PNN =0.

Also, EcP => v(ENP) = fEnpfdu = fEnpf+d“ >0,

and EcN =>v(ENN) =[  fdu==[_ f du <0 so

P is positive set and N is a negative set. Hence PUN is a Haha decomposition of X.
with respect to v. Next, VE € M,

V) = [ fdu = [, [ = [of* du

so vt = ftdu.

likewise, VE € M,

vIE) = VIE) ~v(E) = [ftdu - [ fdu = [, fdu-f fdu= [ ~fdu=[ fdp
so v™ = fTdu.

Furthermore, , VE € M,

WIE) = vi(E)+v (E) = [ ffdu + [f~du = [ f*+ f~ du = [jIfldu

so |v| = |fldu



Suppose that v is a signed measure on (X,M) and E € M.

vt(E) =sup{v(F): FeM, FcE}and v (E) = -inf{v(F) : FEM, FCE}

Sol)

Let X=PUN.Let EeM. Then v*(E)=v(ENP) < sup{v(F): FEM, F c E}.
Also, if FcE, then FNP c ENP,

sov(F)=v(F nP)+v(FnN) <v(F nP)=v(F) < vieE).
Taking the supremum ove all such F yeilds

sup{ v(F) : FcE} < v*(E).

Hence = holds.

As for v—, we have v (E) = —v(ENN) < -inf{ v(F) : FCE}.
Next, if Fc E,then FN N € ENN, so

vIF)=v(F N P)+v(FNN)=v(F nNN)=-v(F)=-v(E)
So v (E) < —v(F)

Sov(E) <sup{ —v(F): FcE}=-inf{v(F): FcE}

Hence = holds.



VIE) =sup{ X |v(E;)| : neN, E,,...,E, are disjoint, and U} E; = E}

Sol)
First, sup { Z’:|v(E])| :neN, E, .., E, are disjoint, and U} E; = E} > [v(ENP)| + |[v(E NN)|
=v*(E) + |-v (E)|

=|vI(E)

Conversely, let E = UZE]
Then IoI(8) = M(U;E) = SiM(E) = D (v (5) +v(5)
= ) (v (E) v ()
= 2iv(E)I
so taking supremum over all such (E]);l yields
[v|(E) = sup {ZT|V(E'])| :neN, Ey, .., E, are disjoint, and U E; = E'}

Thus = holds.
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The Lebegue Radon Nicodym Theorem

Let v bea o and y a o positive measure on (X, M)
There exist unique o finite signed measure 2 Ly, p< pu,and v=21+p.
Moreover, there is an extended p integrable function f:X — R such that dp = f dy,

and any two such functions are equal pa.e.

Theorem
Let v be a finite measure and p a positive measure on (X, M).

Then v « u iff for every € > 0 there exists § > 0 such that |[v(E)| < & whenever u(E) < 6.

Corollary

If f € L', for every & > 0 there exists § > 0 such that |[, fdu| < ¢ whenever u(E) < 6.

v is a signed measure and p is a positive measure on (X, M).
We say that v is absolutely continuous with respect to p and write v « p
if v(E) =0 for every E € M for which u(E) =0

It is easily verified that v « p iff |v| « p iff vt « p and v~ « u.

Integration with respect to a signed measure v is defined in the obvious way: We set
I'v)=L*(vY) n L'(v")

Jfav = [favt - [fdv™ ( fel'(v))



The Jordan Decomposition Theorem
If v is a signed measure, there exist unique positive measures v* and v~ such that

v=vr—v~ and vt 1 v~

vt positive variation of v
v~ negative variation of v
v =v* —v~ Jordan decomposition of v

[v] = vt + v~ total variation of v

v nulliff [v|(E) =0,and v Lpu iff [v|Lu iff vt Ly and v~ Lpu

If v is a signed measure on (X,M), a set E € M is called
positive for v if v(F) =0
negative for v if v(F) < 0

null for v if v(F) = 0forall FEM suchthat F c E

Thus, in the example v(E) = [, f du described above,
E is positive when f >0
negative when f <0

or null precisely when f =0 u ae.on E



First, if u,, u, are measures on M and at least one of them is finite, then v = u; — u, is a signed

measure.

Second, if u is a measure on M and f : X — [—o, 0] is a measurable fuction such that at least

one of [ f*du and [ f~du is finite
we shall call f an extended u integrable function

the set function v defined by v(E) = [, fdu

Let (X,M) be a measurable space. A signed measure on (X,M) is a function

viM — [—oo, 0] such that
v(¢) =0

v assumes at most one of the values +oo

if {E;} is a sequence of disjoint sets in M, then v(U; E;) = X v(E),
where the latter sum converges absolutely if v(UioEj) is finite

Thus every measure is a signed measure

we shall sometimes refer to measures as positive measures.

VICE) = v*(E) + v (E)
vHE) = [ f*du
vi(E) = [,f du
fr+f = If]
[,fdv= [ fdv*

dev =—ffdv‘

WIEE) =v*(E) +v=(E) = [fdlv| =[fdv* + [fdv™

a. [v|(E)

vH(E) +vT(E) = [fdlv| =[fdvt + [fdv™

b. v =vt—v  =[fdv = [fdvt - [fadv



The Radon Nikodym theorem involves a measurable space (X, X) on which two ¢ finite measurea

are defined, u and v. It states that, if v < u, then there exists a ¥ measurable function

f:X - [0,0), such that for any measurable set 4 c X,

v(4) = [,fdn

The function f satisfying the above equality is uniquely defined up to a u null set, that is, if g is

another function which the same property, then f = g u almost everywhere.

Extension to

A similar theorem can be proven for signed measure; namely, that if u is a nonnegative o finite
measure, and v is a finite valued signed measure such that v « u, that is v is absolutely
continuous with respect to p, then there ia a u integrable real valued function g on X such that

for every measurable set A4,

v(4) = f,gdp.



08¢EI3
Measure Mesurable function Generated o-algebra Measurable space Measure space

Signed measure o-algebra algebra

Let X be a set equipped with a g-algebra M.
A measure on M is a function pu : M — [0,00] such that
® u(¢) =0 (1)
® if {E;}¥ is sequence of disjoint sets in M, then u(UTE]) = IPu(E) (2)
(2) is called countable additivity
It implies finite additivity
® if E,..E, are disjoint sets in M, then u(U]E) = =Pu(E;) (3)
because one can take E; = ¢ for j >n.

A function u that satisfies (1) and (3) but not necessarily (2) is called a finitely additive measure

If X isasetand M c P(X) is a o-algebra, (X,M) is called a measurable space
and the sets in M are called measurable sets

If u is a measure on (X,M), then (X,M,u) is called a measure space

We recall that any mapping f:X —» Y between two sets induces a mapping

fL:P(Y) » P(X), defined by f~Y(E) ={x€X : f(x) €EE },

which preserves unions, intersections, and complements.

If (X,M)and (Y,N) are measurable spaces, a mapping f:X - Y is called (M,N)-measureable, or

just measurable when M and N are understood, if f~'(E) e M forall E€N



We now examine the most important measure on R, namely, Lebegue measure:
This is the complete measure uy associated to the function F(x) = x,
for which m is called the class of Lebegue measurable sets, and shall denoted it by £

We shall also refer to the restriction of m to By as Lebegue measure

Our first applications of Caratheodory's theorem will be in the context of extending measures
from algebras to g-algebras. More precisely, if A € P(X) is an algebra, a function

Uo - A - [0,00] will be called a premeasure if

® u(p) =0

® if {4;}7° is a sequence of disjoint sets in A such that UTAJ- € 4, then
uo(US 4) = Zuo(4))
In particular, a premeasure is finitely additive since one can take A; = ¢ for j large.

The notions of finite and o-finite premeasures are defined just as for measures

The abstract generalization of the notion of outer area is as follows.

An outer measure on a nonempty set X is a function p* : P(X) — [0,00] that satisfies
® ' (¢)=0
® (A <uw®B) if AcB

o wli4) s zrw(a)



Let (X,M) be a measurable space.

A signed measure on (X, M) is a function v : M — [-o0,00] such that
® v(p) =0
® v assumes at most one of the values + o

® if {E;} is a sequence of disjoint sets in M, then v( UT E) = £Pv(E))

where the latter sum converges absolutely if v( UTEJ-) is finite

The most common way to obtain outer measure is to start with a family &€ of “elementary sets”
on which a notion of measure of defined and then to approximate arbitrary sets “from the

outside” by countable unions of members of &

The measure i is called the completion of u, and M is called the completion of M with respect

tou

If (xM,u) is a mesure space, a set E € M such that u(E)=0 is called a null set

By subadditivity, any countable union of null sets is a null set, a fact which we shall use frequently
If a statement about points x € X is true except for x in some null set. we say that it is true
almost everywhere (abbreviated a.e.) or for almost every x.

(If more precision is needed, we shall speak of a u-null set, or u-almost everywhere)



If u(E)=0and F c E, then u(F) = 0 by monotonicity provided that F € M, but in general it need
not be true that F € M. A measure whose domain includes all subsets of null sets is called

complete.

Let X be a nonempty set. An algebra of sets on X is a nonempty collection A of subsets of X

that is closed under finite unions and complements; in other words,
if Ey,...E, € A then JTE; € A ; and if E € A, then E€ € A,

A o-algebra is an algebra that is closed under countable unions.

It is trivial to verify that the intersection of any family of g-algebras on X is againa a g-algebra.

It follows that if € is any subset of P(X), there is a unique smallest g-algebra M(€)

containing &€, namely, the intersection of all g-algebras containing €.

(There is always at least one such, namely, P(X).) M(E) is called the o-algebra generated by €.



3-8 v iff vl p iff v kp and v- < u

Sol)

We will prove vy s vtKpand v Ky = vKpy =2 vKy
Thoughout this problem, let X= PUN, and E € M such that u(E)=0
First, let v « u. Then given E as above, u(E)=0, so v(E) = 0.

so vt(E) = v(ENnP) < u(E) =0

Also, v7(E) =—v(ENN) <—u(E) =0

So vt(E) = v (E) =0

andso vtk v~ Ku

Next, if vt « u and v~ « u then v*(E) = v (E) =0

Then |V|(E) = vT(E) + v (E) =0,

as desired finally, if |v| « g, then v*(E) + v=(E) = 0.

so vt(E) = v (E) =0,andso v(E) = vt(E) - v (E) =0

Hence v « u. Therefore, the statements are equivalent

3-9 Suppose {v;} is a sequence of positive measures. If v; L u for all j, then X{°v; L u ; and

if v; «u forall j, then ZPv; < .

Sol)

For the first part, for each j € N (3 0)

let X = N; UM; where v; lives on N; and u lives on M;
Let v = Z{°v;. Then v is a measure

v(@) = X vi(¢) = 20 = 0, and



if (E;) disjoint, v(UE;)

Z:;l Vn (U;:l Ef)

52 va(E)

2721251 vn(E})

2i21v(E;)
Now that we know v is a measure,

let N=U, N, and M ="M,

| claim u liveson M, v on N

Let E c N.then Vj €N, u(EnN;) = 0.
So u(E) <u(UTENN,)

=IPu(ENN;)

Thus N is null for u. Also VEc M, Ec M
vj €N, so v;(E) = 0.

Thus v(E) = Z°v(E) = 2°0=0

So M is null for v

Also, NUM = X. Hence v L u

For the second part, Suppose v; K u Vj €N

Then v;(E) =0 vj

So v(E) = X®v,(En) =0



3-10 Theorem 3.5 may fail when v is not finite.( Consider dv(x) = dx/x and du(x) = dx on

(0,1), or v = counting measure and u(E) = Y,cg2™ " on N)

Sol)



