3-1 Let v be a signed measure on (x, M). If $\left\{E_{j}\right\}$ is an increasing sequence in M, then $v\left(\bigcup_{1}^{\infty} E_{j}\right)=\lim _{j \rightarrow \infty} v\left(E_{j}\right)$. If $\left\{E_{j}\right\}$ is a decreasing sequence in M and $v\left(E_{1}\right)$ is finite, then $v\left(\bigcap_{1}^{\infty} E_{j}\right)=\lim _{j \rightarrow \infty} v\left(E_{j}\right)$.

Sol)

For the first claim, let $E_{0}=\varnothing$.
Then by countable additivity, we have
$v\left(\bigcup_{1}^{\infty} E_{j}\right)=\Sigma_{1}^{\infty} v\left(E_{j} \backslash E_{j-1}\right)=\lim _{n \rightarrow \infty} \sum_{1}^{n} v\left(E_{j} \backslash E_{j-1}\right)=\lim _{n \rightarrow \infty} v\left(E_{n}\right)$
For the next claim, let $F_{j}=E_{1} \backslash E_{j}$
Then $\left\{F_{n}\right\}$ is an increasing sequence in m
Also, $v\left(F_{j}\right)=v\left(E_{1}\right)-v\left(E_{j}\right)$, so $v\left(F_{j}\right)+v\left(E_{j}\right)=v\left(E_{1}\right)$
and $\bigcup_{1}^{\infty} F_{j}=\bigcup_{1}^{\infty}\left(E_{1} \backslash E_{j}\right)=E_{1} \backslash\left(\bigcap_{1}^{\infty} E_{j}\right)$.
Then, we can apply the previous claim, so we have
$\lim _{j \rightarrow \infty} v\left(F_{j}\right)=v\left(\bigcup_{1}^{\infty} F_{j}\right)=v\left(E_{1} \backslash\left(\bigcap_{1}^{\infty} E_{j}\right)\right)=v\left(E_{1}\right)-v\left(\bigcap_{1}^{\infty} E_{j}\right)$
Therefore
$v\left(E_{1}\right)=v\left(\bigcap_{1}^{\infty} E_{j}\right)+\lim _{j \rightarrow \infty} v\left(F_{j}\right)=v\left(\bigcap_{1}^{\infty} E_{j}\right)+\lim _{j \rightarrow \infty}\left(v\left(E_{1}\right)-v\left(E_{j}\right)\right)$
Since $v\left(E_{1}\right)<\infty$, subtraction it yields
$0=v\left(\bigcap_{1}^{\infty} E_{j}\right)-\lim _{j \rightarrow \infty} v\left(E_{j}\right)$
i.e. $\lim _{j \rightarrow \infty} v\left(E_{j}\right)=v\left(\bigcap_{1}^{\infty} E_{j}\right)$, as designed

3-2 If v is a signed measure, E is v-null iff $|v|(E)=0$. Also, if v and μ are signed measures, $v \perp \mu$ iff $|v| \perp \mu$ iff $v^{+} \perp \mu$ and $v^{-} \perp \mu$.

Sol)

Suppose E is v-null. Let $\mathrm{X}=\mathrm{P} \cup \mathrm{N}$ be a Hahn decomposition of X with respect to v.
Since E is v-null, $\forall F \subset E$ such that F is mble, $v(F)=0$.

In particular, $v(E \cap P)=0$ and $v(E \cap N)=0$.

Thus $|v|(E)=v^{+}(E)+v^{-}(E)=v(E \cap P)-v(E \cap N)=0$.

Conversely, suppose $|v|(E)=0$. Then $v^{+}(E)+v^{-}(E)=0$.
so $v^{+}(E)=v^{-}(E)=0$.

Now let $F \subset E$ be mable.

Then $v^{+}(F) \leq v^{+}(E)=0$, and likewise
$v^{-}(F) \leq v^{-}(E)=0$ so $v^{+}(F)=v^{-}(F)=0$. Thus $v(F)=v^{+}(F)-v^{-}(F)=0$
This holds $\forall F \subset E$ mable. Hence E is v-null
$v \perp \mu$ iff $|v| \perp \mu$ iff $v^{+} \perp \mu$ and $v^{-} \perp \mu$.
$v \perp \mu \quad \mathrm{X}$

$v^{+} \perp \mu$

3-3 Let v be a signed measure on (X, M)
a. $L^{1}(v)=L^{1}(|v|)$

Sol)

Let $f \in L^{1}(v)=L^{1}\left(v^{+}\right) \cap L^{1}\left(v^{-}\right)$. so
$\int f d v^{+}=\int_{p} f d v<\infty$. Likewise $\int f d v^{-}=-\int_{N} f d v>-\infty$
So $\int f d|v|=\int f d v^{+}+\int f d v^{-}<\infty$
Hence $f \in L^{1}(|v|)$.
conversely, if $f \in L^{1}(|v|)$, then $\infty>\int f d|v|=\int f d v^{+}+\int f d v^{-}$.
so $\int f d v^{+}, \int f d v^{-}<\infty$.
so $L^{1}\left(v^{+}\right) \cap L^{1}\left(v^{-}\right)=L^{1}(v)$ as desired.
b. If $\mathrm{f} \in L^{1}(v),\left|\int f d v\right| \leq \int|f| d|v|$

Sol)

Let $f \in L^{1}(v)$. then

$$
\begin{aligned}
\left|\int f d v\right|=\left|\int_{P} f d v+\int_{N} f d v\right| & =\left|\int_{P} f d v^{+}-\int_{N} f d v^{-}\right| \\
& \leq\left|\int_{P} f d v^{+}\right|+\left|\int_{N} f d v^{-}\right| \\
& \leq \int_{P}|f| d v^{+}+\int_{N}|f| d v^{-} \\
& =\int|f| d|v|
\end{aligned}
$$

c. If $E \in M,|v|(E)=\sup \left\{\left|\int_{E} f d v\right|:|f| \leq 1\right\}$

Sol)

We have $\left|\int_{E} f d v\right| \leq \int_{E}|f| d|v| \leq \int_{E} d(|v|)=|v|(E)$
Taking the supremum over alll such fyields
$\sup \left\{\left|\int_{E} f d v\right|:|f| \leq 1\right\} \leq|v|(E)$.

Conversely, let $g=1_{P}-1_{N}$. then $|g| \leq 1$
and $|v|(E)=\int_{E} d(|v|)=\int_{E} d v^{+}+\int_{E} d v^{-}$

$$
\begin{aligned}
& =\int_{E \cap p} d v^{+}+\int_{E \cap N} d v^{-} \\
& =\int_{E \cap P} g d v-\int_{E \cap \cap} g d v^{-} \\
& =\int_{E} g d v \leq\left|\int_{E} g d v\right| \\
& \leq \sup \left\{\left|\int_{E} f d v\right|:|f| \leq 1\right\}
\end{aligned}
$$

Hence $|v|(E)=\sup \left\{\left|\int_{E} f d v\right|:|f| \leq 1\right\}$

용어정리-MEASURE THEORY AND INTEGRATION- BARRA 중에서

$l(I)$ for the length of I, namely $\mathrm{b}-\mathrm{a}$
Lebesgur outer measure(outer measure) $m^{*}(A)=\inf \Sigma l\left(I_{n}\right)$
Where the infimum is taken over all finite or countable collections of intervals $\left[I_{n}\right]$ such that $A \subseteq I_{n}$ The set E is Lebegue measurable(measurable) if for each set A we have
$m^{*}(A)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)$
As m^{*} is subadditive, to prove E is measurable we need only show, for each A, that $m^{*}(A) \geq m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)$

A class of subsets of an arbitrary space X is said to be a σ-algebra if X belongs to the class and the class is closed under the formation of countable unions and of complements
only finite unions we obtain an algebra
M : the class of Lebegue measurable sets
Let A be a class of subsets of a space X. Then there exists a smallest σ-algebra S containing A.
We say that S is the σ-algebra generated by A
We denoted by B the σ-algebra generated by the class of intervals of the form [a,b); its members are called the Borel sets of R **
$\limsup E_{i}=\bigcap_{1}^{\infty} \bigcup_{i \geq n} E_{i} \liminf E_{i}=\bigcup_{1}^{\infty} \bigcap_{i \geq n} E_{i}$
if $E_{1} \subseteq E_{2} \subseteq \ldots$, we have $m\left(\lim E_{i}\right)=\lim m\left(E_{i}\right)$
if $E_{1} \supseteq E_{2} \supseteq \ldots$, and $m\left(E_{i}\right)<\infty$ for each I, then we have $m\left(\lim E_{i}\right)=\lim m\left(E_{i}\right)$
Let f be an extended real-valued function defined on a measurable set E
Then f is a Lebesgue-mesurable function (measurable function) if, for each $\alpha \in R$, the set
[$x: f(x)>\alpha$] is measurable
** we say that the function f is Borel measurable or a Borel function if $\forall \alpha,[x: f(x)>\alpha]$ is a Borel set

Let E be a measurable set. Then for each y the set $E+y=[x+y: x \in E]$ is measurable and the measures are the same.

A non-negative finite-valued function $\varphi(x)$, taking only a finite number of different values, is called a simple function. If $a_{1}, a_{2}, \ldots, a_{n}$ are the distint values taken by φ and $A_{i}=\left[x: \varphi(x)=a_{i}\right]$, then clearly $\varphi(x)=\sum_{1}^{n} a_{i} \chi_{A_{i}}(x)$

The sets A_{i} are measurable if φ is a measurable funtion
Let φ be a measurable simple function. Then $\int \varphi d x=\sum_{1}^{n} a_{i} m\left(A_{i}\right)$
where $a_{i}, A_{i}, i=1, \ldots, \mathrm{n}$ are as in $\varphi(x)=\sum_{1}^{n} a_{i} \chi_{A_{i}}(x)$ is called the integral of φ For any non-negative measurable function f, the integral of $f, \int f d x$, is given by
$\int f d x=\sup \int \varphi d x$, where the supremum is taken over all measurable simple funtions $\varphi, \varphi \leq f$.
$\int_{E} \varphi d x=\sum_{1}^{n} a_{i} m\left(A_{j} \cap E\right)$
$\int_{A \cup B} \varphi d x=\int_{A} \varphi d x+\int_{B} \varphi d x$
Lebsgue's Monotone Convergence Theorem
Let $\left\{f_{n}, \mathrm{n}=1,2, \ldots\right\}$ be a sequence of non-negative measurable functions such that $\left\{f_{n}\right\}$ is monotone increasing for each x . Let $f=\lim f_{n}$. Then $\int f d x=\lim \int f_{n} d x$.

Let f and g be non-negative measurable functions. Then $\int f d x+\int g d x=\int(f+g) d x$
If $f(x)$ is any real fuction, $f^{+}=\max (f(x), 0), f^{-}(x)=\max (-f(x), 0)$, are said to be the positive and negative parts of f, respectively
$f=f^{+}-f^{-}$
$|f|=f^{+}+f^{-1}$
$f^{+}, f^{-} \geq 0$
f is measurable iff f^{+}and f^{-1} are both measurable
If f is a measurable function and $\int f^{+} d x<\infty, \int f^{-} d x<\infty$, we say that f is integrable and its integrable is given by $\int f d x=\int f^{+} d x-\int f^{-} d x$.
$* \int|f| d x=\int f^{+} d x+\int f^{-} d x$
If E is a measurable set, f is a measurable function, and $\chi_{E} f$ is integrable, we say that f is integrable over E , and its integral is given by $\int_{E} f d x=\int f \chi_{E} d x$. The notation $f \in L(E)$ is then sometimes used.

3-4 If v is a signed measure and λ, μ are positive measures such that $v=\lambda-\mu$, then $\lambda \geq v^{+}$and $\mu \geq v^{-}$.

Sol)

a)

Let $P \cup N$ be a Hahn decomposition for v.

Let $E \in M$, We want to show $\lambda(E) \geq v^{+}(E)$, i.e.
$\lambda(E \cap P)+\lambda(E \cap N)=\lambda(E) \geq v^{+}(E)$

$$
\begin{aligned}
& =(\lambda-\mu)(P \cap E) \\
& =\lambda(P \cap E)-\mu(P \cap E)
\end{aligned}
$$

So we want to show $\lambda(E \cap N) \geq-\mu(P \cap E)$

This is trvial since $\mu, \lambda \geq 0$.
b)

Let $P \cup N$ be a Hahn decomposition for v.
Let $E \in M$, We want to show $\mu(E) \geq v^{-}(E)$. i.e.
$\mu(E \cap P)+\mu(E \cap N)=\mu(E) \geq v^{-}(E)$

$$
\begin{aligned}
& =-(\lambda-\mu)(E \cap N) \\
& =-\lambda(E \cap N)+\mu(E \cap N)
\end{aligned}
$$

Hence we want to show $\mu(E \cap P) \geq-\lambda(E \cap N)$, which is trivial.

3-5 If v_{1}, v_{2} are signed measures that both omit the value $+\infty$ or $-\infty$, then $\left|v_{1}+v_{2}\right| \leq\left|v_{1}\right|+\left|v_{2}\right|$.

Sol)

Since v_{1}, v_{2} both omit either $+\infty$ or $-\infty$,
so we can write $v_{1}+v_{2}=\left(v_{1}^{+}-v_{1}^{-}\right)+\left(v_{2}^{+}-v_{2}^{-}\right)$

$$
\begin{aligned}
= & \left(v_{1}^{+}+v_{2}^{+}\right)-\left(v_{1}^{-}+v_{2}^{-}\right) \\
& =: \lambda-\mu
\end{aligned}
$$

By exercise4,
$\lambda \geq\left(v_{1}+v_{2}\right)^{+}$and $\mu \geq\left(v_{1}+v_{2}\right)^{-}$. so
$\left|v_{1}\right|+\left|v_{2}\right|=v_{1}^{+}+v_{1}^{-}+v_{2}^{+}+v_{2}^{-}=\lambda-\mu$

$$
\begin{aligned}
& \geq\left(v_{1}+v_{2}\right)^{+}+\left(v_{1}+v_{2}\right)^{-} \\
& =\left|v_{1}+v_{2}\right|
\end{aligned}
$$

3-6 Suppose $v(E)=\int f d u$ where μ is a positive measure and f is an extended μ-integrable function. Describe the Hahn decomposition of v and the positive, negative, and total variations of v in terms of f and μ.

Sol)

I claim $\mathrm{P}=\{f \geq 0\}, \mathrm{N}=\{f<0\}, \nu^{+}=f^{+} d \mu, v^{-}=f^{-} d \mu$, and $|v|=|f| d \mu$.
WLOG, assume $\int f^{-} d \mu<\infty$.
Now $P \cup N=\mathrm{X}$ and $P \cap N=\varnothing$.
Also, $E \subset P=>v(E \cap P)=\int_{E \cap p} f d \mu=\int_{E \cap p} f^{+} d \mu \geq 0$,
and $E \subset N=>v(E \cap N)=\int_{E \cap N} f d \mu=-\int_{E \cap N} f^{-} d \mu \leq 0$. so
P is positive set and N is a negative set. Hence $P u N$ is a Haha decomposition of X.
with respect to v. Next, $\forall E \in M$,
$\nu^{+}(E)=\int_{E \cap P} f d \mu=\int_{E \cap p} f^{+} d \mu=\int_{E} f^{+} d \mu$,
so $v^{+}=f^{+} d \mu$.
likewise, $\forall E \in M$,
$v^{-}(E)=v^{+}(E)-v(E)=\int_{E} f^{+} d u-\int_{E} f d u=\int_{E \cap p} f d u-\int_{E} f d u=\int_{E \cap N}-f d u=\int_{E} f^{-} d \mu$ so $v^{-}=f^{-} d \mu$.

Furthermore, , $\forall E \in M$,
$|v|(E)=v^{+}(E)+v^{-}(E)=\int_{E} f^{+} d \mu+\int_{E} f^{-} d \mu=\int_{E} f^{+}+f^{-} d \mu=\int_{E}|f| d \mu$.
so $|v|=|f| d \mu$

3-7 Suppose that v is a signed measure on (X, M) and $E \in M$.
a. $v^{+}(E)=\sup \{v(F): F \in M, F \subset E\}$ and $v^{-}(E)=-\inf \{v(F): F \in M, F \subset E\}$

Sol)

Let $X=P \cup N$. Let $E \in M$. Then $v^{+}(E)=v(E \cap P) \leq \sup \{v(F): F \in M, F \subset E\}$.

Also, if $F \subset E$, then $F \cap P \subset E \cap P$,
so $v(F)=v(F \cap P)+v(F \cap N) \leq v(F \cap P)=v^{+}(F) \leq v^{+}(E)$.
Taking the supremum ove all such F yeilds
$\sup \{v(F): F \subset E\} \leq v^{+}(E)$.

Hence $=$ holds.

As for v^{-}, we have $v^{-}(E)=-v(E \cap N) \leq-\inf \{v(F): F \subset E\}$.
Next, if $F \subset E$, then $F \cap N \subset E \cap N$, so
$v(F)=v(F \cap P)+v(F \cap N) \geq v(F \cap N)=-v^{-}(F) \geq-v^{-}(E)$
So $v^{-}(E) \leq-v(F)$
So $v^{-}(E) \leq \sup \{-v(F): F \subset E\}=-\inf \{v(F): F \subset E\}$

Hence $=$ holds.
b. $|v|(E)=\sup \left\{\sum_{1}^{n}\left|v\left(E_{j}\right)\right|: n \in \mathbb{N}, E_{1}, \ldots, E_{n}\right.$ are disjoint, and $\left.\cup_{1}^{n} E_{j}=E\right\}$

Sol)

First, $\sup \left\{\sum_{1}^{n}\left|v\left(E_{j}\right)\right|: n \in \mathbb{N}, E_{1}, \ldots, E_{n}\right.$ are disjoint, and $\left.\cup_{1}^{n} E_{j}=E\right\} \geq|v(E \cap P)|+|v(E \cap N)|$

$$
\begin{aligned}
& =v^{+}(E)+\left|-v^{-}(E)\right| \\
& =|v|(E)
\end{aligned}
$$

Conversely, let $E=\bigcup_{1}^{\eta} E_{j}$.
Then $|v|(E)=|v|\left(\bigcup_{1}^{n} E_{j}\right)=\sum_{1}^{n}|v|\left(E_{j}\right)=\sum_{1}^{n}\left(v^{+}\left(E_{j}\right)+v^{-}\left(E_{j}\right)\right)$

$$
\begin{aligned}
& \geq \sum_{1}^{n}\left(v^{+}\left(E_{j}\right)-v^{-}\left(E_{j}\right)\right) \\
& =\sum_{1}^{n}\left|v\left(E_{j}\right)\right| .
\end{aligned}
$$

so taking supremum over all such $\left(E_{j}\right)_{1}^{n}$ yields
$|v|(E) \geq \sup \left\{\sum_{1}^{n}\left|v\left(E_{j}\right)\right|: n \in \mathbb{N}, E_{1}, \ldots, E_{n}\right.$ are disjoint, and $\left.\cup_{1}^{n} E_{j}=E\right\}$
Thus $=$ holds.

용어 정리2- 뒤에서 앞으로

The Lebegue Radon Nicodym Theorem
Let v be a σ finite signed measure and μ a σ finite positive measure on (X, M)
There exist unique $\boldsymbol{\sigma}$ finite signed measure $\lambda \perp \mu, \rho \ll \mu$, and $v=\lambda+\rho$.
Moreover, there is an extended $\boldsymbol{\mu}$ integrable function $\boldsymbol{f}: X \rightarrow \mathbb{R}$ such that $d \rho=f d \mu$, and any two such functions are equal μ a.e.

Theorem

Let v be a finite measure and μ a positive measure on (X, M).

Then $v \ll \mu$ iff for every $\varepsilon>0$ there exists $\delta>0$ such that $|v(E)|<\varepsilon$ whenever $\mu(E)<\delta$.

Corollary
If $f \in L^{1}(\mu)$, for every $\varepsilon>0$ there exists $\delta>0$ such that $\left|\int_{E} f d \mu\right|<\varepsilon$ whenever $\mu(E)<\delta$.
v is a signed measure and μ is a positive measure on (X, M).

We say that v is absolutely continuous with respect to μ and write $\nu \ll \mu$
if $\nu(E)=0$ for every $E \in M$ for which $\mu(E)=0$
It is easily verified that $v \ll \mu$ iff $|v| \ll \mu$ iff $v^{+} \ll \mu$ and $v^{-} \ll \mu$.

Integration with respect to a signed measure v is defined in the obvious way: We set $L^{1}(v)=L^{1}\left(v^{+}\right) \cap L^{1}\left(v^{-}\right)$
$\int f d v=\int f d v^{+}-\int f d v^{-}\left(f \epsilon L^{1}(v)\right)$

The Jordan Decomposition Theorem

If v is a signed measure, there exist unique positive measures v^{+}and v^{-}such that $v=v^{+}-v^{-}$and $v^{+} \perp v^{-}$
v^{+}positive variation of v
v^{-}negative variation of v
$v=v^{+}-v^{-}$Jordan decomposition of v
$|v|=v^{+}+v^{-}$total variation of v
v null iff $|v|(E)=0$, and $\quad v \perp \mu$ iff $|v| \perp \mu$ iff $v^{+} \perp \mu$ and $v^{-} \perp \mu$

If v is a signed measure on (X, M), a set $E \in M$ is called
positive for v if $v(F) \geq 0$
negative for v if $v(F) \leq 0$
null for v if $v(F)=0$ for all $F \in M$ such that $F \subset E$

Thus, in the example $v(E)=\int_{E} f d \mu$ described above,
E is positive when $f \geq 0$
negative when $f \leq 0$
or null precisely when $f=0 \mu$ a.e. on E

First, if μ_{1}, μ_{2} are measures on M and at least one of them is finite, then $v=\mu_{1}-\mu_{2}$ is a signed measure.

Second, if μ is a measure on M and $f: X \rightarrow[-\infty, \infty]$ is a measurable fuction such that at least one of $\int f^{+} d \mu$ and $\int f^{-} d \mu$ is finite
we shall call f an extended μ integrable function
the set function v defined by $v(E)=\int_{E} f d \mu$

Let (X, M) be a measurable space. A signed measure on (X, M) is a function
$v: M \rightarrow[-\infty, \infty]$ such that
$v(\phi)=0$
v assumes at most one of the values $\pm \infty$
if $\left\{E_{j}\right\}$ is a sequence of disjoint sets in M, then $v\left(\bigcup_{1}^{\infty} E_{j}\right)=\sum_{i}^{\infty} v\left(E_{j}\right)$,
where the latter sum converges absolutely if $v\left(\bigcup_{1}^{\infty} E_{j}\right)$ is finite

Thus every measure is a signed measure
we shall sometimes refer to measures as positive measures.
$|v|(E)=v^{+}(E)+v^{-}(E)$
$v^{+}(E)=\int_{E} f^{+} d \mu$
$\nu^{-}(E)=\int_{E} f^{-} d \mu$
$f^{+}+f^{-}=|f|$
$\int_{P} f d v=\int_{P} f d v^{+}$
$\int_{N} f d v=-\int_{N} f d v^{-}$
$|v|(E)=v^{+}(E)+v^{-}(E)=\int f d|v|=\int f d v^{+}+\int f d v^{-}$
a. $|v|(E)=v^{+}(E)+v^{-}(E)=\int f d|v|=\int f d v^{+}+\int f d v^{-}$
b. $v=v^{+}-v^{-}=\int f d v=\int f d v^{+}-\int f d v^{-}$

Radon-Nikodym theorem

The Radon Nikodym theorem involves a measurable space (X, Σ) on which two σ finite measurea are defined, μ and v. It states that, if $v \ll u$, then there exists a Σ measurable function
$f: X \rightarrow[0, \infty)$, such that for any measurable set $A \subset X$,
$\nu(A)=\int_{A} f d \mu$.

The function f satisfying the above equality is uniquely defined up to a μ null set, that is, if g is another function which the same property, then $f=g \mu$ almost everywhere.

Extension to signed measure

A similar theorem can be proven for signed measure; namely, that if μ is a nonnegative σ finite measure, and v is a finite valued signed measure such that $v \ll u$, that is v is absolutely continuous with respect to μ, then there ia a μ integrable real valued function g on X such that for every measurable set A,
$\nu(A)=\int_{A} g d \mu$.

용어정리3

Measure Mesurable function Generated σ-algebra Measurable space Measure space Signed measure σ-algebra algebra

Let X be a set equipped with a σ-algebra M.

A measure on M is a function $\mu: M \rightarrow[0, \infty]$ such that

- $\mu(\phi)=0(1)$
- if $\left\{E_{j}\right\}_{1}^{\infty}$ is sequence of disjoint sets in M, then $\mu\left(\bigcup_{1}^{\infty} E_{j}\right)=\Sigma_{1}^{\infty} \mu\left(E_{j}\right)$
(2) is called countable additivity

It implies finite additivity

- if $E_{1}, \ldots E_{n}$ are disjoint sets in M, then $\mu\left(\bigcup_{1}^{n} E_{j}\right)=\Sigma_{1}^{n} \mu\left(E_{j}\right)$ (3)
because one can take $E_{j}=\phi$ for $j>n$.

A function μ that satisfies (1) and (3) but not necessarily (2) is called a finitely additive measure

If X is a set and $M \subset P(X)$ is a σ-algebra, (X, M) is called a measurable space and the sets in M are called measurable sets

If μ is a measure on (X, M), then (X, M, μ) is called a measure space

We recall that any mapping $f: X \rightarrow Y$ between two sets induces a mapping
$f^{-1}: P(Y) \rightarrow P(X)$, defined by $f^{-1}(E)=\{x \in X: f(x) \in E\}$,
which preserves unions, intersections, and complements.

If (X, M) and (Y, N) are measurable spaces, a mapping $f: X \rightarrow Y$ is called (M, N)-measureable, or just measurable when M and N are understood, if $f^{-1}(E) \in M$ for all $E \in N$

We now examine the most important measure on \mathbb{R}, namely, Lebegue measure:

This is the complete measure μ_{F} associated to the function $F(x)=x$, for which m is called the class of Lebegue measurable sets, and shall denoted it by \mathcal{L} We shall also refer to the restriction of m to $B_{\mathbb{R}}$ as Lebegue measure

Our first applications of Caratheodory's theorem will be in the context of extending measures from algebras to σ-algebras. More precisely, if $A \subset P(X)$ is an algebra, a function $\mu_{0}: A \rightarrow[0, \infty]$ will be called a premeasure if

- $\mu_{0}(\phi)=0$
- if $\left\{A_{j}\right\}_{1}^{\infty}$ is a sequence of disjoint sets in A such that $\bigcup_{1}^{\infty} A_{j} \in A$, then
$\mu_{0}\left(\bigcup_{1}^{\infty} A_{j}\right)=\Sigma_{1}^{\infty} \mu_{0}\left(A_{j}\right)$

In particular, a premeasure is finitely additive since one can take $A_{j}=\phi$ for j large.

The notions of finite and σ-finite premeasures are defined just as for measures

The abstract generalization of the notion of outer area is as follows.

An outer measure on a nonempty set X is a function $\mu^{*}: \mathcal{P}(X) \rightarrow[0, \infty]$ that satisfies

- $\mu^{*}(\phi)=0$
- $\mu^{*}(A) \leq \mu^{*}(B)$ if $A \subset B$
- $\mu^{*}\left(\bigcup_{1}^{\infty} A_{j}\right) \leq \Sigma_{1}^{\infty} \mu^{*}\left(A_{j}\right)$

Let (X, M) be a measurable space.

A signed measure on (X, M) is a function $v: M \rightarrow[-\infty, \infty]$ such that

- $v(\phi)=0$
- $\quad v$ assumes at most one of the values $\pm \infty$
- if $\left\{E_{j}\right\}$ is a sequence of disjoint sets in M, then $v\left(\bigcup_{1}^{\infty} E_{j}\right)=\Sigma_{1}^{\infty} v\left(E_{j}\right)$
where the latter sum converges absolutely if $v\left(\bigcup_{1}^{\infty} E_{j}\right)$ is finite

The most common way to obtain outer measure is to start with a family \mathcal{E} of "elementary sets" on which a notion of measure of defined and then to approximate arbitrary sets "from the outside" by countable unions of members of \mathcal{E}

The measure $\bar{\mu}$ is called the completion of μ, and \bar{M} is called the completion of M with respect to μ

If (x, M, μ) is a mesure space, a set $E \in M$ such that $\mu(E)=0$ is called a null set By subadditivity, any countable union of null sets is a null set, a fact which we shall use frequently If a statement about points $x \in X$ is true except for x in some null set. we say that it is true almost everywhere (abbreviated a.e.) or for almost every x.
(If more precision is needed, we shall speak of a μ-null set, or μ-almost everywhere)

If $\mu(E)=0$ and $F \subset E$, then $\mu(F)=0$ by monotonicity provided that $F \in M$, but in general it need not be true that $F \in M$. A measure whose domain includes all subsets of null sets is called complete.

Let X be a nonempty set. An algebra of sets on X is a nonempty collection A of subsets of X that is closed under finite unions and complements; in other words,
if $E_{1}, \ldots, E_{n} \in A$, then $\bigcup_{1}^{n} E_{j} \in A$; and if $E \in A$, then $E^{C} \in A$.

A σ-algebra is an algebra that is closed under countable unions.

It is trivial to verify that the intersection of any family of σ-algebras on X is againa a σ-algebra.

It follows that if \mathcal{E} is any subset of $P(X)$, there is a unique smallest σ-algebra $M(\mathcal{E})$ containing ε, namely, the intersection of all σ-algebras containing ε.
(There is always at least one such, namely, $P(X)) M.(\mathcal{E})$ is called the σ-algebra generated by \mathcal{E}.

3-8 $v \ll \mu$ iff $|v| \ll \mu$ iff $v^{+} \ll \mu$ and $v^{-} \ll \mu$

Sol)

We will prove $v \ll \mu \Rightarrow v^{+} \ll \mu$ and $v^{-} \ll \mu \Rightarrow|v| \ll \mu \Rightarrow v \ll \mu$

Thoughout this problem, let $X=P \cup N$, and $E \in M$ such that $\mu(E)=0$

First, let $v \ll \mu$. Then given E as above, $\mu(E)=0$, so $v(E)=0$.
so $v^{+}(E)=v(E \cap P) \leq \mu(E)=0$

Also, $v^{-}(E)=-v(E \cap N) \leq-\mu(E)=0$

So $v^{+}(E)=v^{-}(E)=0$
and so $v^{+} \ll \mu, v^{-} \ll \mu$

Next, if $v^{+} \ll \mu$ and $v^{-} \ll \mu$ then $v^{+}(E)=v^{-}(E)=0$
Then $|v|(E)=v^{+}(E)+v^{-}(E)=0$,
as desired finally, if $|v| \ll \mu$, then $v^{+}(E)+v^{-}(E)=0$.
so $v^{+}(E)=v^{-}(E)=0$, and so $v(E)=v^{+}(E)-v^{-}(E)=0$
Hence $v \ll \mu$. Therefore, the statements are equivalent

3-9 Suppose $\left\{v_{j}\right\}$ is a sequence of positive measures. If $v_{j} \perp \mu$ for all $j_{\text {, then }} \Sigma_{1}^{\infty} v_{j} \perp \mu$; and if $v_{j} \ll \mu$ for all j, then $\Sigma_{1}^{\infty} v_{j} \ll \mu$.

Sol)

For the first part, for each $j \in \mathbb{N}(\nexists 0)$
let $X=N_{j} \cup M_{j}$ where v_{j} lives on N_{j} and μ lives on M_{j}
Let $v=\Sigma_{1}^{\infty} v_{j}$. Then v is a measure
$v(\phi)=\sum_{1}^{\infty} v_{j}(\phi)=\Sigma_{1}^{\infty} 0=0$, and
if $\left(E_{j}\right)$ disjoint, $v\left(U E_{j}\right)=\sum_{n=1}^{\infty} v_{n}\left(\bigcup_{j=1}^{\infty} E_{j}\right)$

$$
\begin{aligned}
& =\sum_{n=1}^{\infty} \Sigma_{j=1}^{\infty} v_{n}\left(E_{j}\right) \\
& =\Sigma_{j=1}^{\infty} \Sigma_{n=1}^{\infty} v_{n}\left(E_{j}\right) \\
& =\Sigma_{j=1}^{\infty} v\left(E_{j}\right)
\end{aligned}
$$

Now that we know v is a measure,
Let $N=\bigcup_{1}^{\infty} N_{j}$ and $M=\bigcap_{1}^{\infty} M_{j}$
I claim μ lives on M, v on N
Let $E \subset N$. then $\forall j \in \mathbb{N}, \mu\left(E \cap N_{j}\right)=0$.
So $\mu(E) \leq \mu\left(\cup_{1}^{\infty} E \cap N_{j}\right)$
$=\Sigma_{1}^{\infty} \mu\left(E \cap N_{j}\right)$
$=\Sigma_{1}^{\infty} 0$
$=0$
Thus N is null for μ. Also $\forall E \subset M, E \subset M$
$\forall j \in \mathbb{N}$, so $v_{j}(E)=0$.
Thus $v(E)=\Sigma_{1}^{\infty} v_{j}(E)=\Sigma_{1}^{\infty} 0=0$
So M is null for v
Also, $N \cup M=X$. Hence $v \perp \mu$
For the second part, Suppose $v_{j} \ll \mu \forall j \in \mathbb{N}$
Then $v_{j}(E)=0 \forall j$
So $v(E)=\sum_{1}^{\infty} v_{n}(E n)=0$

3-10 Theorem 3.5 may fail when v is not finite. (Consider $d v(x)=d x / x$ and $d \mu(x)=d x$ on $(0,1)$, or $v=$ counting measure and $\mu(E)=\sum_{n \in E} 2^{-n}$ on \mathbb{N}.)

Sol)

