용어정리 1 Real Analysis - Folland 책 중에서

Measure Mesurable function Generated σ-algebra Measurable space Measure space Signed measure σ-algebra algebra

Let X be a set equipped with a σ-algebra M.
A measure on M is a function $\mu: M \rightarrow[0, \infty]$ such that

- $\mu(\phi)=0(1)$
- if $\left\{E_{j}\right\}_{1}^{\infty}$ is sequence of disjoint sets in M, then $\mu\left(\bigcup_{1}^{\infty} E_{j}\right)=\Sigma_{1}^{\infty} \mu\left(E_{j}\right)$ (2)
(2) is called countable additivity

It implies finite additivity

- if $E_{1}, \ldots E_{n}$ are disjoint sets in M, then $\mu\left(\bigcup_{1}^{n} E_{j}\right)=\Sigma_{1}^{n} \mu\left(E_{j}\right)$ (3)
because one can take $E_{j}=\phi$ for $j>n$.
A function μ that satisfies (1) and (3) but not necessarily (2) is called a finitely additive measure

If X is a set and $M \subset P(X)$ is a σ-algebra, (X, M) is called a measurable space and the sets in M are called measurable sets

If μ is a measure on (X, M), then (X, M, μ) is called a measure space

We recall that any mapping $f: X \rightarrow Y$ between two sets induces a mapping
$f^{-1}: P(Y) \rightarrow P(X)$, defined by $f^{-1}(E)=\{x \in X: f(x) \in E\}$,
which preserves unions, intersections, and complements.
If (X, M) and (Y, N) are measurable spaces, a mapping $f: X \rightarrow Y$ is called (M, N)-measureable, or just measurable when M and N are understood, if $f^{-1}(E) \in M$ for all $E \in N$

We now examine the most important measure on \mathbb{R}, namely, Lebegue measure:
This is the complete measure μ_{F} associated to the function $F(x)=x$,
for which m is called the class of Lebegue measurable sets, and shall denoted it by \mathcal{L}
We shall also refer to the restriction of m to $B_{\mathbb{R}}$ as Lebegue measure

Our first applications of Caratheodory's theorem will be in the context of extending measures from algebras to σ-algebras. More precisely, if $A \subset P(X)$ is an algebra, a function $\mu_{0}: A \rightarrow[0, \infty]$ will be called a premeasure if

- $\mu_{0}(\phi)=0$
- if $\left\{A_{j}\right\}_{1}^{\infty}$ is a sequence of disjoint sets in A such that $\bigcup_{1}^{\infty} A_{j} \in A$, then
$\mu_{0}\left(\bigcup_{1}^{\infty} A_{j}\right)=\Sigma_{1}^{\infty} \mu_{0}\left(A_{j}\right)$

In particular, a premeasure is finitely additive since one can take $A_{j}=\phi$ for j large.

The notions of finite and σ-finite premeasures are defined just as for measures

The abstract generalization of the notion of outer area is as follows.

An outer measure on a nonempty set X is a function $\mu^{*}: \mathcal{P}(X) \rightarrow[0, \infty]$ that satisfies

- $\mu^{*}(\phi)=0$
- $\mu^{*}(A) \leq \mu^{*}(B)$ if $A \subset B$
- $\mu^{*}\left(\bigcup_{1}^{\infty} A_{j}\right) \leq \Sigma_{1}^{\infty} \mu^{*}\left(A_{j}\right)$

Let (X, M) be a measurable space.

A signed measure on (X, M) is a function $v: M \rightarrow[-\infty, \infty]$ such that

- $v(\phi)=0$
- $\quad v$ assumes at most one of the values $\pm \infty$
- if $\left\{E_{j}\right\}$ is a sequence of disjoint sets in M, then $v\left(\bigcup_{1}^{\infty} E_{j}\right)=\Sigma_{1}^{\infty} v\left(E_{j}\right)$
where the latter sum converges absolutely if $v\left(\bigcup_{1}^{\infty} E_{j}\right)$ is finite

The most common way to obtain outer measure is to start with a family \mathcal{E} of "elementary sets" on which a notion of measure of defined and then to approximate arbitrary sets "from the outside" by countable unions of members of ε

The measure $\bar{\mu}$ is called the completion of μ, and \bar{M} is called the completion of M with respect to μ

If (x, M, μ) is a mesure space, a set $E \in M$ such that $\mu(E)=0$ is called a null set By subadditivity, any countable union of null sets is a null set, a fact which we shall use frequently If a statement about points $x \in X$ is true except for x in some null set. we say that it is true almost everywhere (abbreviated a.e.) or for almost every x.
(If more precision is needed, we shall speak of a μ-null set, or μ-almost everywhere)

If $\mu(E)=0$ and $F \subset E$, then $\mu(F)=0$ by monotonicity provided that $F \in M$, but in general it need not be true that $F \in M$. A measure whose domain includes all subsets of null sets is called complete.

Let X be a nonempty set. An algebra of sets on X is a nonempty collection A of subsets of X that is closed under finite unions and complements; in other words, if $E_{1}, \ldots, E_{n} \in A$, then $\bigcup_{1}^{n} E_{j} \in A$; and if $E \in A$, then $E^{C} \in A$.

A σ-algebra is an algebra that is closed under countable unions.

It is trivial to verify that the intersection of any family of σ-algebras on X is againa a σ-algebra.

It follows that if $\mathcal{\varepsilon}$ is any subset of $P(X)$, there is a unique smallest σ-algebra $M(\mathcal{E})$ containing ε, namely, the intersection of all σ-algebras containing \mathcal{E}.
(There is always at least one such, namely, $P(X)) M.(\varepsilon)$ is called the σ-algebra generated by ε.
$l(I)$ for the length of I, namely $\mathrm{b}-\mathrm{a}$

Lebesgur outer measure(outer measure) $m^{*}(A)=\inf \Sigma l\left(I_{n}\right)$
Where the infimum is taken over all finite or countable collections of intervals [I_{n}] such that $A \subseteq I_{n}$

The set E is Lebegue measurable(measurable) if for each set A we have
$m^{*}(A)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)$
As m^{*} is subadditive, to prove E is measurable we need only show, for each A, that
$m^{*}(A) \geq m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)$
A class of subsets of an arbitrary space X is said to be a σ-algebra if X belongs to the class and the class is closed under the formation of countable unions and of complements
only finite unions we obtain an algebra
M : the class of Lebegue measurable sets

Let A be a class of subsets of a space X. Then there exists a smallest σ-algebra S containing A.
We say that S is the σ-algebra generated by A
We denoted by B the σ-algebra generated by the class of intervals of the form $[a, b)$; its members are called the Borel sets of $R^{* *}$
$\lim \sup E_{i}=\bigcap_{1}^{\infty} \bigcup_{i \geq n} E_{i} \liminf E_{i}=\bigcup_{1}^{\infty} \bigcap_{i \geqq n} E_{i}$
if $E_{1} \subseteq E_{2} \subseteq \ldots$, we have $m\left(\lim E_{i}\right)=\lim m\left(E_{i}\right)$
if $E_{1} \supseteq E_{2} \supseteq \ldots$, and $m\left(E_{i}\right)<\infty$ for each I, then we have $m\left(\lim E_{i}\right)=\lim m\left(E_{i}\right)$

Let f be an extended real-valued function defined on a measurable set E
Then f is a Lebesgue-mesurable function (measurable function) if, for each $\alpha \in R$, the set
$[x: f(x)>\alpha]$ is measurable
** we say that the function f is Borel measurable or a Borel function if $\forall \alpha,[x: f(x)>\alpha]$ is a Borel set
Let E be a measurable set. Then for each y the set $E+y=[x+y: x \in E]$ is measurable and the measures are the same.

A non-negative finite-valued function $\varphi(x)$, taking only a finite number of different values, is called a simple function. If $a_{1}, a_{2}, \ldots, a_{n}$ are the distint values taken by φ and $A_{i}=\left[x: \varphi(x)=a_{i}\right]$, then clearly $\varphi(x)=\sum_{1}^{n} a_{i} \chi_{A_{i}}(x)$

The sets A_{i} are measurable if φ is a measurable funtion

Let φ be a measurable simple function. Then $\int \varphi d x=\sum_{1}^{n} a_{i} m\left(A_{i}\right)$
where $a_{i}, A_{i}, i=1, \ldots, \mathrm{n}$ are as in $\varphi(x)=\sum_{1}^{n} a_{i} \chi_{A_{i}}(x)$ is called the integral of φ
For any non-negative measurable function f, the integral of $f, \int f d x$, is given by
$\int f d x=\sup \int \varphi d x$, where the supremum is taken over all measurable simple funtions $\varphi, \varphi \leq f$.
$\int_{E} \varphi d x=\sum_{1}^{n} a_{i} m\left(A_{j} \cap E\right)$
$\int_{A \cup B} \varphi d x=\int_{A} \varphi d x+\int_{B} \varphi d x$
Lebsgue's Monotone Convergence Theorem

Let $\left\{f_{n}, \mathrm{n}=1,2, \ldots\right\}$ be a sequence of non-negative measurable functions such that $\left\{f_{n}\right\}$ is monotone increasing for each x . Let $f=\lim f_{n}$. Then $\int f d x=\lim \int f_{n} d x$.

Let f and g be non-negative measurable functions. Then $\int f d x+\int g d x=\int(f+g) d x$
If $f(x)$ is any real fuction, $f^{+}=\max (f(x), 0), f^{-}(x)=\max (-f(x), 0)$, are said to be the positive and negative parts of f, respectively
$f=f^{+}-f^{-}$
$|f|=f^{+}+f^{-1}$
$f^{+}, f^{-} \geq 0$
f is measurable iff f^{+}and f^{-1} are both measurable

If f is a measurable function and $\int f^{+} d x<\infty, \int f^{-} d x<\infty$, we say that f is integrable and its integrable is given by $\int f d x=\int f^{+} d x-\int f^{-} d x$.
$* \int|f| d x=\int f^{+} d x+\int f^{-} d x$
If E is a measurable set, f is a measurable function, and $\chi_{E} f$ is integrable, we say that f is integrable over E , and its integral is given by $\int_{E} f d x=\int f \chi_{E} d x$. The notation $f \in L(E)$ is then sometimes used.

The Lebegue Radon Nicodym Theorem
Let v be a σ finite signed measure and μ a σ finite positive measure on (X, M)
There exist unique $\boldsymbol{\sigma}$ finite signed measure $\lambda \perp \mu, \rho \ll \mu$, and $v=\lambda+\rho$.
Moreover, there is an extended $\boldsymbol{\mu}$ integrable function $\boldsymbol{f}: X \rightarrow \mathbb{R}$ such that $d \rho=f d \mu$, and any two such functions are equal μ a.e.

Theorem
Let v be a finite measure and μ a positive measure on (X, M).
Then $v \ll \mu$ iff for every $\varepsilon>0$ there exists $\delta>0$ such that $|v(E)|<\varepsilon$ whenever $\mu(E)<\delta$.

Corollary
If $f \in L^{1}(\mu)$, for every $\varepsilon>0$ there exists $\delta>0$ such that $\left|\int_{E} f d \mu\right|<\varepsilon$ whenever $\mu(E)<\delta$.
v is a signed measure and μ is a positive measure on (X, M).
We say that v is absolutely continuous with respect to μ and write $v \ll \mu$
if $v(E)=0$ for every $E \in M$ for which $\mu(E)=0$
It is easily verified that $v \ll \mu$ iff $|v| \ll \mu$ iff $v^{+} \ll \mu$ and $v^{-} \ll \mu$.

Integration with respect to a signed measure v is defined in the obvious way: We set
$L^{1}(v)=L^{1}\left(v^{+}\right) \cap L^{1}\left(v^{-}\right)$
$\int f d v=\int f d v^{+}-\int f d v^{-}\left(f \in L^{1}(v)\right)$

The Jordan Decomposition Theorem
If v is a signed measure, there exist unique positive measures v^{+}and v^{-}such that $v=v^{+}-v^{-}$and $v^{+} \perp v^{-}$
v^{+}positive variation of v
v^{-}negative variation of v
$v=v^{+}-v^{-}$Jordan decomposition of v
$|v|=v^{+}+v^{-}$total variation of v
v null iff $|v|(E)=0$, and $\quad v \perp \mu$ iff $|v| \perp \mu$ iff $v^{+} \perp \mu$ and $v^{-} \perp \mu$

If v is a signed measure on (X, M), a set $E \in M$ is called
positive for v if $v(F) \geq 0$
negative for v if $v(F) \leq 0$
null for v if $v(F)=0$ for all $F \in M$ such that $F \subset E$

Thus, in the example $\nu(E)=\int_{E} f d \mu$ described above,
E is positive when $f \geq 0$
negative when $f \leq 0$
or null precisely when $f=0 \mu$ a.e. on E

First, if μ_{1}, μ_{2} are measures on M and at least one of them is finite, then $v=\mu_{1}-\mu_{2}$ is a signed measure.
Second, if μ is a measure on M and $f: X \rightarrow[-\infty, \infty]$ is a measurable fuction such that at least one of $\int f^{+} d \mu$ and $\int f^{-} d \mu$ is finite
we shall call f an extended μ integrable function
the set function v defined by $\nu(E)=\int_{E} f d \mu$

Let (X, M) be a measurable space. A signed measure on (X, M) is a function
$v: M \rightarrow[-\infty, \infty]$ such that
$v(\phi)=0$
v assumes at most one of the values $\pm \infty$
if $\left\{E_{j}\right\}$ is a sequence of disjoint sets in M, then $v\left(\bigcup_{1}^{\infty} E_{j}\right)=\sum_{i}^{\infty} v\left(E_{j}\right)$,
where the latter sum converges absolutely if $v\left(\bigcup_{1}^{\infty} E_{j}\right)$ is finite
Thus every measure is a signed measure
we shall sometimes refer to measures as positive measures.
$|v|(E)=v^{+}(E)+v^{-}(E)$
$v^{+}(E)=\int_{E} f^{+} d \mu$
$v^{-}(E)=\int_{E} f^{-} d \mu$
$f^{+}+f^{-}=|f|$
$\int_{P} f d v=\int_{P} f d v^{+}$
$\int_{N} f d v=-\int_{N} f d v^{-}$
$|v|(E)=v^{+}(E)+v^{-}(E)=\int f d|v|=\int f d v^{+}+\int f d v^{-}$
a. $|v|(E)=v^{+}(E)+v^{-}(E)=\int f d|v|=\int f d v^{+}+\int f d v^{-}$
b. $v=v^{+}-v^{-}=\int f d v=\int f d v^{+}-\int f d v^{-}$

