용어정리 1 Real Analysis – Folland 책 중에서

Measure Mesurable function Generated σ -algebra Measurable space Measure space

Signed measure σ -algebra algebra

Let X be a set equipped with a σ -algebra M.

A measure on *M* is a function μ : $M \rightarrow [0,\infty]$ such that

- $\mu(\phi) = 0$ (1)
- if $\{E_j\}_1^\infty$ is sequence of disjoint sets in *M*, then $\mu(\bigcup_{j=1}^\infty E_j) = \Sigma_1^\infty \mu(E_j)$ (2)

(2) is called countable additivity

It implies finite additivity

• if $E_1, \dots E_n$ are disjoint sets in M, then $\mu(\bigcup_{j=1}^{n} E_j) = \Sigma_1^n \mu(E_j)$ (3)

because one can take $E_j = \phi$ for j > n.

A function μ that satisfies (1) and (3) but not necessarily (2) is called a finitely additive measure

If X is a set and $M \subset P(X)$ is a σ -algebra, (X, M) is called a measurable space

and the sets in M are called measurable sets

If μ is a measure on (X, M), then (X, M, μ) is called a measure space

We recall that any mapping $f: X \to Y$ between two sets induces a mapping

 $f^{-1}: P(Y) \to P(X)$, defined by $f^{-1}(E) = \{ x \in X : f(x) \in E \}$,

which preserves unions, intersections, and complements.

If (X, M) and (Y, N) are measurable spaces, a mapping $f: X \to Y$ is called (M, N)-measurable, or just measurable when M and N are understood, if $f^{-1}(E) \in M$ for all $E \in N$

We now examine the most important measure on \mathbb{R} , namely, Lebegue measure:

This is the complete measure μ_F associated to the function F(x) = x,

for which m is called the class of Lebegue measurable sets, and shall denoted it by \mathcal{L}

We shall also refer to the restriction of m to $B_{\mathbb{R}}$ as Lebegue measure

Our first applications of Caratheodory's theorem will be in the context of extending measures from algebras to σ -algebras. More precisely, if $A \subset P(X)$ is an algebra, a function $\mu_0 : A \to [0,\infty]$ will be called a premeasure if

- $\mu_0(\phi) = 0$
- if $\{A_j\}_1^\infty$ is a sequence of disjoint sets in A such that $\bigcup_1^\infty A_j \in A$, then

 $\mu_0(\bigcup\nolimits_1^\infty A_j) \; = \; \varSigma_1^\infty \mu_0\bigl(A_j\bigr)$

In particular, a premeasure is finitely additive since one can take $A_j = \phi$ for j large.

The notions of finite and σ -finite premeasures are defined just as for measures

The abstract generalization of the notion of outer area is as follows.

An outer measure on a nonempty set X is a function μ^* : $\mathcal{P}(X) \to [0,\infty]$ that satisfies

- $\mu^*(\phi) = 0$
- $\mu^*(A) \leq \mu^*(B)$ if $A \subset B$
- $\mu^*(\bigcup_{j=1}^{\infty} A_j) \leq \Sigma_1^{\infty} \mu^*(A_j)$

Let (X, M) be a measurable space.

A signed measure on (X, M) is a function $v : M \to [-\infty, \infty]$ such that

- $v(\phi) = 0$
- ν assumes at most one of the values $\pm \infty$
- if $\{E_j\}$ is a sequence of disjoint sets in M, then $\nu(\bigcup_{j=1}^{\infty} E_j) = \Sigma_1^{\infty} \nu(E_j)$

where the latter sum converges absolutely if $\nu(\bigcup_{j=1}^{\infty} E_j)$ is finite

The most common way to obtain outer measure is to start with a family \mathcal{E} of "elementary sets" on which a notion of measure of defined and then to approximate arbitrary sets "from the outside" by countable unions of members of \mathcal{E}

The measure $\bar{\mu}$ is called the completion of μ , and \bar{M} is called the completion of M with respect to μ

If (x, M, μ) is a mesure space, a set $E \in M$ such that $\mu(E)=0$ is called a null set

By subadditivity, any countable union of null sets is a null set, a fact which we shall use frequently If a statement about points $x \in X$ is true except for x in some null set. we say that it is true almost everywhere (abbreviated a.e.) or for almost every x.

(If more precision is needed, we shall speak of a μ -null set, or μ -almost everywhere)

If $\mu(E)=0$ and $F \subset E$, then $\mu(F) = 0$ by monotonicity provided that $F \in M$, but in general it need not be true that $F \in M$. A measure whose domain includes all subsets of null sets is called complete.

Let *X* be a nonempty set. An algebra of sets on *X* is a nonempty collection *A* of subsets of *X* that is closed under finite unions and complements; in other words,

if $E_1,...,E_n \in A$, then $\bigcup_{i=1}^{n} E_i \in A$; and if $E \in A$, then $E^C \in A$.

A σ -algebra is an algebra that is closed under countable unions.

It is trivial to verify that the intersection of any family of σ -algebras on X is againa a σ -algebra.

It follows that if \mathcal{E} is any subset of P(X), there is a unique smallest σ -algebra $M(\mathcal{E})$ containing \mathcal{E} , namely, the intersection of all σ -algebras containing \mathcal{E} .

(There is always at least one such, namely, P(X).) $M(\mathcal{E})$ is called the σ -algebra generated by \mathcal{E} .

용어정리 2-MEASURE THEORY AND INTEGRATION- BARRA 중에서

l(I) for the length of I, namely b-a

Lebesgur outer measure(outer measure) $m^*(A) = \inf \Sigma l(I_n)$

Where the infimum is taken over all finite or countable collections of intervals $[I_n]$ such that $A \subseteq I_n$

The set E is Lebegue measurable(measurable) if for each set A we have

$$m^*(A) = m^*(A \cap E) + m^*(A \cap E^c)$$

As m^* is subadditive, to prove E is measurable we need only show, for each A, that

$$m^*(A) \geq m^*(A \cap E) + m^*(A \cap E^c)$$

A class of subsets of an arbitrary space X is said to be a σ -algebra if X belongs to the class and the class is closed under the formation of countable unions and of complements

only finite unions we obtain an algebra

M : the class of Lebegue measurable sets

Let A be a class of subsets of a space X. Then there exists a smallest σ -algebra S containing A.

We say that S is the σ -algebra generated by A

We denoted by *B* the σ -algebra generated by the class of intervals of the form [a,b); its members are called the Borel sets of *R* **

$$\limsup E_i = \bigcap_{1}^{\infty} \bigcup_{i \ge n} E_i \ \limsup E_i = \bigcup_{1}^{\infty} \bigcap_{i \ge n} E_i$$

if $E_1 \subseteq E_2 \subseteq ...$, we have $m(\lim E_i) = \lim m(E_i)$

if $E_1 \supseteq E_2 \supseteq \dots$, and $m(E_i) < \infty$ for each I, then we have $m(\lim E_i) = \lim m(E_i)$

Let f be an extended real-valued function defined on a measurable set E

Then f is a Lebesgue-mesurable function (measurable function) if, for each $\alpha \in R$, the set

 $[x: f(x) > \alpha]$ is measurable

** we say that the function f is Borel measurable or a Borel function if $\forall \alpha$, $[x: f(x) > \alpha]$ is a Borel set

Let *E* be a measurable set. Then for each *y* the set $E + y = [x + y : x \in E]$ is measurable and the measures are the same.

A non-negative finite-valued function $\varphi(x)$, taking only a finite number of different values, is called a simple function. If $a_1, a_2, ..., a_n$ are the distint values taken by φ and $A_i = [x: \varphi(x) = a_i]$, then clearly $\varphi(x) = \sum_{i=1}^{n} a_i \chi_{A_i}(x)$

The sets A_i are measurable if φ is a measurable function

Let φ be a measurable simple function. Then $\int \varphi \, dx = \sum_{i=1}^{n} a_i m(A_i)$

where $a_{i,A_{i}}$, i=1,...,n are as in $\varphi(x) = \sum_{1}^{n} a_{i} \chi_{A_{i}}(x)$ is called the integral of φ

For any non-negative measurable function f, the integral of f, $\int f dx$, is given by

 $\int f \, dx = \sup \int \varphi \, dx$, where the supremum is taken over all measurable simple functions $\varphi, \varphi \leq f$.

$$\int_{E} \varphi \, dx = \sum_{1}^{n} a_{i} m(A_{j} \cap E)$$
$$\int_{A \cup B} \varphi \, dx = \int_{A} \varphi \, dx + \int_{B} \varphi \, dx$$

Lebsgue's Monotone Convergence Theorem

Let { f_n , n=1,2,...} be a sequence of non-negative measurable functions such that { f_n } is monotone increasing for each x. Let $f = \lim f_n$. Then $\int f \, dx = \lim \int f_n \, dx$.

Let f and g be non-negative measurable functions. Then $\int f \, dx + \int g \, dx = \int (f + g) \, dx$

If f(x) is any real fuction, $f^+ = max(f(x), 0)$, $f^-(x) = max(-f(x), 0)$, are said to be the positive and negative parts of f, respectively

 $f = f^{+} - f^{-}$ $|f| = f^{+} + f^{-1}$ $f^{+}, f^{-} \ge 0$

f is measurable iff f^+ and f^{-1} are both measurable

If f is a measurable function and $\int f^+ dx < \infty$, $\int f^- dx < \infty$, we say that f is integrable and its integrable is given by $\int f dx = \int f^+ dx - \int f^- dx$.

*
$$\int |f| dx = \int f^+ dx + \int f^- dx$$

If *E* is a measurable set, *f* is a measurable function, and $\chi_E f$ is integrable, we say that *f* is integrable over E, and its integral is given by $\int_E f \, dx = \int f \chi_E \, dx$. The notation $f \in L(E)$ is then sometimes used.

용어 정리 3- 뒤에서 앞으로

The Lebegue Radon Nicodym Theorem

Let v be a σ finite signed measure and μ a σ finite positive measure on (X, M)

There exist unique σ finite signed measure $\lambda \perp \mu$, $\rho \ll \mu$, and $\nu = \lambda + \rho$.

Moreover, there is an extended μ integrable function $f: X \to \mathbb{R}$ such that $d\rho = f d\mu$,

and any two such functions are equal $\mu a.e.$

Theorem

Let ν be a finite measure and μ a positive measure on (*X*, *M*).

Then $\nu \ll \mu$ iff for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|\nu(E)| < \varepsilon$ whenever $\mu(E) < \delta$.

Corollary

If $f \in L^1(\mu)$, for every $\varepsilon > 0$ there exists $\delta > 0$ such that $\left| \int_E f \, d\mu \right| < \varepsilon$ whenever $\mu(E) < \delta$.

 ν is a signed measure and μ is a positive measure on (*X*, *M*). We say that ν is absolutely continuous with respect to μ and write $\nu \ll \mu$ if $\nu(E) = 0$ for every $E \in M$ for which $\mu(E) = 0$ It is easily verified that $\nu \ll \mu$ iff $|\nu| \ll \mu$ iff $\nu^+ \ll \mu$ and $\nu^- \ll \mu$.

Integration with respect to a signed measure ν is defined in the obvious way: We set

 $L^{1}(\nu) = L^{1}(\nu^{+}) \cap L^{1}(\nu^{-})$ $\int f \, d\nu = \int f \, d\nu^{+} - \int f \, d\nu^{-} (f \epsilon L^{1}(\nu))$

The Jordan Decomposition Theorem

If ν is a signed measure, there exist unique positive measures ν^+ and ν^- such that

 $\nu = \nu^+ - \nu^-$ and $\nu^+ \perp \nu^-$

 ν^+ positive variation of ν

 v^- negative variation of v

 $\nu = \nu^+ - \nu^-$ Jordan decomposition of ν

 $|\nu| = \nu^+ + \nu^-$ total variation of ν

 ν null iff $|\nu|(E) = 0$, and $\nu \perp \mu$ iff $|\nu| \perp \mu$ iff $\nu^+ \perp \mu$ and $\nu^- \perp \mu$

If ν is a signed measure on (X, M), a set $E \in M$ is called

positive for ν if $\nu(F) \ge 0$

negative for ν if $\nu(F) \leq 0$

null for ν if $\nu(F) = 0$ for all $F \in M$ such that $F \subset E$

Thus, in the example $v(E) = \int_E f d\mu$ described above, *E* is positive when $f \ge 0$ negative when $f \le 0$ or null precisely when f = 0 μ a.e. on *E*

First, if μ_1 , μ_2 are measures on M and at least one of them is finite, then $\nu = \mu_1 - \mu_2$ is a signed measure. Second, if μ is a measure on M and $f: X \to [-\infty, \infty]$ is a measurable fuction such that at least one of $\int f^+ d\mu$ and $\int f^- d\mu$ is finite we shall call f an extended μ integrable function

the set function ν defined by $\nu(E) = \int_E f d\mu$

Let (X, M) be a measurable space. A signed measure on (X, M) is a function

 $\nu: M \to [-\infty, \infty]$ such that

$$\nu(\phi) = 0$$

 ν assumes at most one of the values $\pm\infty$

if $\{E_j\}$ is a sequence of disjoint sets in M, then $\nu(\bigcup_{j=1}^{\infty} E_j) = \sum_{i=1}^{\infty} \nu(E_j)$,

where the latter sum converges absolutely if $\nu(\bigcup_{j=1}^{\infty} E_j)$ is finite

Thus every measure is a signed measure

we shall sometimes refer to measures as positive measures.

 $|v|(E) = v^{+}(E) + v^{-}(E)$ $v^{+}(E) = \int_{E} f^{+} d\mu$ $v^{-}(E) = \int_{E} f^{-} d\mu$ $f^{+} + f^{-} = |f|$ $\int_{P} f dv = \int_{P} f dv^{+}$ $\int_{N} f dv = -\int_{N} f dv^{-}$ $|v|(E) = v^{+}(E) + v^{-}(E) = \int f d |v| = \int f dv^{+} + \int f dv^{-}$

a. $|v|(E) = v^+(E) + v^-(E) = \int f \, d \, |v| = \int f \, dv^+ + \int f \, dv^$ **b.** $v = v^+ - v^- = \int f \, dv = \int f \, dv^+ - \int f \, dv^-$