
용어정리 1 Real Analysis – Folland 책 중에서 
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Let 𝑋 be a set equipped with a 𝜎-algebra 𝑀. 

A measure on 𝑀 is a function 𝜇 : 𝑀 → [0,∞] such that  

⚫ 𝜇(𝜙) =0 (1) 

⚫ if {𝐸𝑗}1
∞ is sequence of disjoint sets in 𝑀, then 𝜇(⋃ 𝐸𝑗

∞

1
) = 𝛴1

∞𝜇(𝐸𝑗) (2) 

(2) is called countable additivity 

It implies finite additivity 

⚫ if 𝐸1, … 𝐸𝑛 are disjoint sets in 𝑀, then 𝜇(⋃ 𝐸𝑗
𝑛

1
) = 𝛴1

𝑛𝜇(𝐸𝑗) (3) 

because one can take 𝐸𝑗 = 𝜙 for 𝑗 > 𝑛. 

A function 𝜇 that satisfies (1) and (3) but not necessarily (2) is called a finitely additive measure 

 

If 𝑋 is a set and 𝑀 ⊂ 𝑃(𝑋) is a 𝜎-algebra, (𝑋, 𝑀) is called a measurable space 

and the sets in 𝑀 are called measurable sets 

If 𝜇 is a measure on (𝑋, 𝑀), then (𝑋, 𝑀, 𝜇) is called a measure space 

 

We recall that any mapping 𝑓: 𝑋 → 𝑌 between two sets induces a mapping 

𝑓−1: 𝑃(𝑌) → 𝑃(𝑋), defined by 𝑓−1(𝐸) = { 𝑥 ∈ 𝑋 : 𝑓(𝑥) ∈ 𝐸 }, 

which preserves unions, intersections, and complements. 

If (𝑋, 𝑀) and (𝑌, 𝑁) are measurable spaces, a mapping 𝑓: 𝑋 → 𝑌 is called (𝑀, 𝑁)-measureable, or  

just measurable when 𝑀 and 𝑁 are understood, if 𝑓−1(𝐸) ∈ 𝑀 for all 𝐸 ∈ 𝑁 

 

We now examine the most important measure on ℝ, namely, Lebegue measure: 

This is the complete measure 𝜇𝐹 associated to the function 𝐹(𝑥) = 𝑥, 

for which 𝑚 is called the class of Lebegue measurable sets, and shall denoted it by ℒ 

We shall also refer to the restriction of 𝑚 to 𝐵ℝ as Lebegue measure 

 



Our first applications of Caratheodory’s theorem will be in the context of extending measures  

from algebras to 𝜎-algebras. More precisely, if 𝐴 ⊂ 𝑃(𝑋) is an algebra, a function 

𝜇0 : 𝐴 → [0,∞] will be called a premeasure if 

⚫ 𝜇0(𝜙) =0 

⚫ if {𝐴𝑗}1
∞ is a sequence of disjoint sets in 𝐴 such that ⋃ 𝐴𝑗

∞

1
 ∈ 𝐴, then 

𝜇0(⋃ 𝐴𝑗
∞

1
) = 𝛴1

∞𝜇0(𝐴𝑗) 

In particular, a premeasure is finitely additive since one can take 𝐴𝑗 = 𝜙 for 𝑗 large. 

The notions of finite and 𝜎-finite premeasures are defined just as for measures 

 

The abstract generalization of the notion of outer area is as follows. 

An outer measure on a nonempty set 𝑋 is a function 𝜇∗ : P(𝑋) → [0,∞] that satisfies 

⚫ 𝜇∗(𝜙)=0 

⚫ 𝜇∗(𝐴) ≤ 𝜇∗(𝐵) if 𝐴 ⊂ 𝐵 

⚫ 𝜇∗(⋃ 𝐴𝑗
∞

1
) ≤  𝛴1

∞𝜇∗(𝐴𝑗) 

 

Let (𝑋, 𝑀) be a measurable space.  

A signed measure on (𝑋, 𝑀) is a function 𝑣 : 𝑀 → [-∞,∞] such that 

⚫ 𝑣(𝜙) = 0 

⚫ 𝜈 assumes at most one of the values ± ∞ 

⚫ if {𝐸𝑗} is a sequence of disjoint sets in 𝑀, then 𝜈( ⋃ 𝐸𝑗
∞

1
) = 𝛴1

∞𝜈(𝐸𝑗) 

where the latter sum converges absolutely if 𝜈( ⋃ 𝐸𝑗
∞

1
) is finite 

 

The most common way to obtain outer measure is to start with a family 휀 of “elementary sets” 

on which a notion of measure of defined and then to approximate arbitrary sets “from the  

outside” by countable unions of members of 휀 

The measure �̅� is called the completion of 𝜇, and �̅� is called the completion of 𝑀 with respect to 𝜇 



If (𝑥,𝑀, 𝜇) is a mesure space, a set 𝐸 ∈ 𝑀 such that 𝜇(𝐸)=0 is called a null set 

By subadditivity, any countable union of null sets is a null set, a fact which we shall use frequently 

If a statement about points 𝑥 ∈ 𝑋 is true except for 𝑥 in some null set. we say that it is true  

almost everywhere (abbreviated a.e.) or for almost every 𝑥. 

(If more precision is needed, we shall speak of a 𝜇-null set, or 𝜇-almost everywhere) 

 

If 𝜇(𝐸)=0 and 𝐹 ⊂ 𝐸, then 𝜇(𝐹) = 0 by monotonicity provided that 𝐹 ∈ 𝑀, but in general it need  

not be true that 𝐹 ∈ 𝑀. A measure whose domain includes all subsets of null sets is called  

complete. 

 

Let 𝑋 be a nonempty set. An algebra of sets on 𝑋 is a nonempty collection 𝐴 of subsets of 𝑋 that is closed  

under finite unions and complements; in other words,  

if 𝐸1,…,𝐸𝑛 ∈ 𝐴, then ⋃ 𝐸𝑗
𝑛

1
 ∈ 𝐴 ; and if 𝐸 ∈ 𝐴, then 𝐸𝐶 ∈ 𝐴. 

A 𝜎-algebra is an algebra that is closed under countable unions. 

 

It is trivial to verify that the intersection of any family of 𝜎-algebras on 𝑋 is againa a 𝜎-algebra. 

It follows that if 휀 is any subset of 𝑃(𝑋), there is a unique smallest 𝜎-algebra 𝑀(휀) containing 휀, namely, the 

intersection of all 𝜎-algebras containing 휀. 

(There is always at least one such, namely, 𝑃(𝑋).) 𝑀(휀) is called the 𝜎-algebra generated by 휀. 

 

 

 

 

 

 



용어정리 2-MEASURE THEORY AND INTEGRATION- BARRA 중에서 

𝑙(𝐼) for the length of 𝐼, namely b-a 

Lebesgur outer measure( outer measure) 𝑚∗(𝐴) = inf 𝛴 𝑙(𝐼𝑛) 

Where the infimum is taken over all finite or countable collections of intervals [𝐼𝑛] such that 𝐴 ⊆ 𝐼𝑛 

The set 𝐸 is Lebegue measurable( measurable) if for each set 𝐴 we have  

𝑚∗(𝐴) =  𝑚∗(𝐴⋂𝐸) + 𝑚∗(𝐴 ∩ 𝐸𝑐) 

As 𝑚∗ is subadditive, to prove 𝐸 is measurable we need only show, for each 𝐴, that 

𝑚∗(𝐴) ≥  𝑚∗(𝐴⋂𝐸) + 𝑚∗(𝐴 ∩ 𝐸𝑐) 

A class of subsets of an arbitrary space 𝑋 is said to be a 𝜎-algebra if 𝑋 belongs to the class and the class is closed  

under the formation of countable unions and of complements 

only finite unions we obtain an algebra 

𝑀 :  the class of Lebegue measurable sets 

Let 𝐴 be a class of subsets of a space 𝑋. Then there exists a smallest 𝜎-algebra 𝑆 containing 𝐴. 

We say that 𝑆 is the 𝜎-algebra generated by 𝐴 

We denoted by 𝐵 the 𝜎-algebra generated by the class of intervals of the form [a,b); its members are called the  

Borel sets of 𝑅 ** 

𝑙𝑖𝑚 𝑠𝑢𝑝 𝐸𝑖 = ⋂ ⋃ 𝐸𝑖𝑖≥𝑛

∞

1
 𝑙𝑖𝑚 𝑖𝑛𝑓 𝐸𝑖 = ⋃ ⋂ 𝐸𝑖𝑖≥𝑛

∞

1
 

if 𝐸1 ⊆ 𝐸2 ⊆…, we have 𝑚(𝑙𝑖𝑚 𝐸𝑖) = 𝑙𝑖𝑚 𝑚(𝐸𝑖) 

if 𝐸1 ⊇ 𝐸2 ⊇ …, and 𝑚(𝐸𝑖) < ∞ for each I, then we have 𝑚(𝑙𝑖𝑚 𝐸𝑖) = 𝑙𝑖𝑚 𝑚(𝐸𝑖) 

Let 𝑓 be an extended real-valued function defined on a measurable set 𝐸 

Then 𝑓 is a Lebesgue-mesurable function (measurable function) if, for each 𝛼 ∈ 𝑅, the set  

[𝑥: 𝑓(𝑥) > 𝛼] is measurable 

 

** we say that the function 𝑓 is Borel measurable or a Borel function if ∀𝛼, [𝑥: 𝑓(𝑥) > 𝛼] is a Borel set 

Let 𝐸 be a measurable set. Then for each 𝑦 the set 𝐸 + 𝑦 =[ 𝑥 + 𝑦 : 𝑥 ∈ 𝐸] is measurable and the measures are  

the same. 

 

 

 



A non-negative finite-valued function 𝜑(𝑥), taking only a finite number of different values, is called a simple function. 

If 𝑎1, 𝑎2, … , 𝑎𝑛 are the distint values taken by 𝜑 and 𝐴𝑖 = [𝑥: 𝜑(𝑥) = 𝑎𝑖], then clearly 𝜑(𝑥) = ∑ 𝑎𝑖𝜒𝐴𝑖
(𝑥)

𝑛

1
 

The sets 𝐴𝑖 are measurable if 𝜑 is a measurable funtion 

Let 𝜑 be a measurable simple function. Then ∫ 𝜑 ⅆ𝑥 = ∑ 𝑎𝑖𝑚(𝐴𝑖)
𝑛
1  

where 𝑎𝑖 ,𝐴𝑖 , 𝑖=1,…,n are as in 𝜑(𝑥) = ∑ 𝑎𝑖𝜒𝐴𝑖
(𝑥)

𝑛

1
 is called the integral of 𝜑 

For any non-negative measurable function 𝑓, the integral of 𝑓, ∫ 𝑓 ⅆ𝑥, is given by  

∫ 𝑓 ⅆ𝑥 =sup ∫ 𝜑 ⅆ𝑥, where the supremum is taken over all measurable simple funtions 𝜑, 𝜑 ≤ 𝑓. 

∫𝜑 ⅆ𝑥
𝐸

= ∑ 𝑎𝑖𝑚(𝐴𝑗 ∩ 𝐸)

𝑛

1

 

∫ 𝜑 ⅆ𝑥
𝐴∪𝐵

= ∫𝜑 ⅆ𝑥
𝐴

+  ∫ 𝜑 ⅆ𝑥
𝐵

 

Lebsgue’s Monotone Convergence Theorem 

Let { 𝑓𝑛, n=1,2,…} be a sequence of non-negative measurable functions such that {𝑓𝑛} is monotone increasing for  

each x. Let 𝑓 = 𝑙𝑖𝑚 𝑓𝑛. Then ∫ 𝑓 ⅆ𝑥 = 𝑙𝑖𝑚 ∫ 𝑓𝑛 ⅆ𝑥. 

Let 𝑓 and 𝑔 be non-negative measurable functions. Then ∫ 𝑓 ⅆ𝑥 + ∫ 𝑔 ⅆ𝑥 = ∫ (𝑓 + 𝑔) ⅆ𝑥 

If 𝑓(𝑥) is any real fuction, 𝑓+ = 𝑚𝑎𝑥(𝑓(𝑥), 0), 𝑓−(𝑥) = 𝑚𝑎𝑥(−𝑓(𝑥), 0), are said to be the positive and negative parts  

of 𝑓, respectively 

𝑓 = 𝑓+ − 𝑓− 

|𝑓| = 𝑓+ + 𝑓−1 

𝑓+, 𝑓− ≥ 0 

f is measurable iff 𝑓+ and 𝑓−1  are both measurable 

 

If 𝑓 is a measurable function and ∫ 𝑓+ ⅆ𝑥 < ∞, ∫ 𝑓− ⅆ𝑥 < ∞, we say that 𝑓 is integrable and its integrable is given  

by ∫ 𝑓 ⅆ𝑥 = ∫ 𝑓+ ⅆ𝑥 − ∫ 𝑓− ⅆ𝑥. 

 

∗  ∫ |𝑓| ⅆ𝑥 = ∫ 𝑓+ ⅆ𝑥 + ∫ 𝑓− ⅆ𝑥 

If 𝐸 is a measurable set, 𝑓 is a measurable function, and 𝜒𝐸𝑓 is integrable, we say that 𝑓 is integrable over E, and  

its integral is given by ∫ 𝑓 ⅆ𝑥
𝐸

= ∫ 𝑓𝜒𝐸 ⅆ𝑥. The notation 𝑓 ∈ 𝐿(𝐸) is then sometimes used. 

 

 

 



용어 정리 3- 뒤에서 앞으로 

The Lebegue Radon Nicodym Theorem 

Let 𝜈 be a 𝜎 finite signed measure and 𝜇 a 𝜎 finite positive measure on (𝑋, 𝑀) 

There exist unique 𝝈 finite signed measure 𝜆 ⊥ 𝜇 , 𝜌 ≪ 𝜇 , and 𝜈 = 𝜆 + 𝜌. 

Moreover, there is an extended 𝝁 integrable function 𝒇: 𝑋 → ℝ such that ⅆ𝜌 = 𝑓 ⅆ𝜇, 

and any two such functions are equal 𝜇 𝑎. 𝑒. 

 

Theorem 

Let 𝜈  be a finite measure and 𝜇 a positive measure on (𝑋, 𝑀). 

Then 𝜈 ≪ 𝜇 iff for every 휀 > 0 there exists 𝛿 > 0 such that |𝜈(𝐸)| < 휀 whenever 𝜇(𝐸) <  𝛿. 

 

Corollary 

If 𝑓 ∈ 𝐿1(𝜇), for every 휀 > 0 there exists 𝛿 > 0 such that |∫ 𝑓 ⅆ𝜇
𝐸

| < 휀 whenever 𝜇(𝐸) <  𝛿. 

 

𝜈 is a signed measure and 𝜇 is a positive measure on (𝑋, 𝑀).  

We say that 𝜈 is absolutely continuous with respect to 𝜇 and write 𝜈 ≪ 𝜇 

if 𝜈(𝐸) = 0 for every 𝐸 ∈ 𝑀 for which 𝜇(𝐸) = 0  

It is easily verified that 𝜈 ≪ 𝜇 iff |𝜈| ≪ 𝜇 iff 𝜈+ ≪ 𝜇 and 𝜈− ≪ 𝜇. 

 

Integration with respect to a signed measure 𝜈 is defined in the obvious way: We set 

𝐿1(𝜈) =  𝐿1(𝜈+) ∩    𝐿1(𝜈−) 

∫ 𝑓 ⅆ𝜈 = ∫ 𝑓 ⅆ𝜈+ - ∫ 𝑓 ⅆ𝜈− ( 𝑓𝜖𝐿1(𝑣)) 

 

 

 

 

 

 

 



The Jordan Decomposition Theorem 

If 𝜈 is a signed measure, there exist unique positive measures 𝜈+ and  𝜈− such that 

𝜈 = 𝜈+ − 𝜈− and 𝜈+ ⊥  𝜈− 

 

𝜈+ positive variation of 𝜈 

𝑣− negative variation of 𝜈 

𝜈 = 𝜈+ − 𝜈− Jordan decomposition of 𝜈 

|𝜈| = 𝜈+ +  𝜈− total variation of 𝜈 

 

𝜈 null iff |𝜈|(𝐸) = 0 , and  𝜈 ⊥ 𝜇 iff |𝜈| ⊥ 𝜇 iff 𝜈+ ⊥ 𝜇 and 𝜈− ⊥ 𝜇 

 

If 𝜈 is a signed measure on (𝑋, 𝑀), a set 𝐸 ∈ 𝑀 is called  

positive for 𝜈 if 𝜈(𝐹) ≥ 0 

negative for 𝜈 if 𝜈(𝐹) ≤ 0 

null for 𝜈 if  𝜈(𝐹) = 0 for all 𝐹 ∈ 𝑀 such that 𝐹 ⊂  𝐸 

 

Thus, in the example 𝜈(𝐸) =  ∫ 𝑓 ⅆ𝜇
𝐸

 described above,  

𝐸 is positive when 𝑓 ≥ 0 

negative when 𝑓 ≤ 0 

or null precisely when 𝑓 = 0 𝜇 a.e. on 𝐸 

 

First, if 𝜇1, 𝜇2 are measures on 𝑀 and at least one of them is finite, then 𝜈 = 𝜇1 − 𝜇2 is a signed measure. 

Second, if 𝜇 is a measure on 𝑀 and 𝑓 ∶ 𝑋 → [−∞, ∞] is a measurable fuction such that at least one of ∫ 𝑓+ ⅆ𝜇  

and ∫ 𝑓− ⅆ𝜇 is finite 

we shall call 𝑓 an extended 𝜇 integrable function 

the set function 𝜈 defined by 𝜈(𝐸) = ∫ 𝑓 ⅆ𝜇
𝐸

 

 

 

 



Let (𝑋, 𝑀) be a measurable space. A signed measure on (𝑋, 𝑀) is a function 

𝜈: 𝑀 → [−∞, ∞] such that 

𝜈(𝜙) = 0 

𝜈 assumes at most one of the values ±∞ 

if {𝐸𝑗} is a sequence of disjoint sets in 𝑀, then 𝜈(⋃ 𝐸𝑗
∞

1
) = ∑ 𝜈(𝐸𝑗)

∞

𝑖
, 

where the latter sum converges absolutely if 𝜈(⋃ 𝐸𝑗
∞

1
) is finite 

Thus every measure is a signed measure 

we shall sometimes refer to measures as positive measures. 

 

|𝜈|(𝐸) = 𝑣+(𝐸) + 𝜈−(𝐸) 

𝑣+(𝐸) =  ∫ 𝑓+ ⅆ𝜇
𝐸

   

𝜈−(𝐸)  = ∫ 𝑓− ⅆ𝜇
𝐸

 

𝑓+ + 𝑓− =  |𝑓| 

∫ 𝑓 ⅆ𝜈
𝑃

=   ∫ 𝑓 ⅆ𝜈+
𝑃

       

 ∫ 𝑓 ⅆ𝜈
𝑁

 = − ∫ 𝑓 ⅆ𝜈−

𝑁

 

 |𝜈|(𝐸) = 𝑣+(𝐸) + 𝜈−(𝐸) = ∫ 𝑓 ⅆ |𝜈| = ∫ 𝑓 ⅆ𝜈+ + ∫ 𝑓 ⅆ𝜈− 

 

a. |𝜈|(𝐸) =  𝑣+(𝐸) + 𝜈−(𝐸) = ∫ 𝑓 ⅆ |𝜈| = ∫ 𝑓 ⅆ𝜈+ + ∫ 𝑓 ⅆ𝜈− 

b.  𝜈        =  𝜈+ − 𝜈−  = ∫ 𝑓 ⅆ𝜈 = ∫ 𝑓 ⅆ𝜈+ - ∫ 𝑓 ⅆ𝜈− 

 

 

 

 

 


