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Measure Mesurable function Generated o-algebra Measurable space Measure space

Signed measure a-algebra algebra

Let X be a set equipped with a o-algebra M.
A measure on M is a function p : M — [0,00] such that
® u(g) =0(1)
® if {E}7 is sequence of disjoint sets in M, then u(U] E;) = £pu(E) ()
(2) is called countable additivity
It implies finite additivity
® if E,..E, are disjoint sets in M, then u(U}E) = Pu(E;) (3)
because one can take E; = ¢ for j >n.

A function u that satisfies (1) and (3) but not necessarily (2) is called a finitely additive measure

If X isasetand M c P(X) is a o-algebra, (X,M) is called a measurable space
and the sets in M are called measurable sets

If u is a measure on (X, M), then (X,M,u) is called a measure space

We recall that any mapping f: X —» Y between two sets induces a mapping

f7L:P(Y) > P(X), defined by f"Y(E) ={x€X : f(x)€EE },

which preserves unions, intersections, and complements.

If (X,M)and (Y,N) are measurable spaces, a mapping f:X - Y is called (M, N)-measureable, or

just measurable when M and N are understood, if f~*(E) e M for all E€N

We now examine the most important measure on R, namely, Lebegue measure:
This is the complete measure up associated to the function F(x) = x,
for which m is called the class of Lebegue measurable sets, and shall denoted it by £

We shall also refer to the restriction of m to By as Lebegue measure



Our first applications of Caratheodory’s theorem will be in the context of extending measures
from algebras to o-algebras. More precisely, if A ¢ P(X) is an algebra, a function

Uo - A - [0,00] will be called a premeasure if

® () =0

® if {4} is a sequence of disjoint sets in A such that UTAJ- € A, then
woU; 4) = ZPuo(4))
In particular, a premeasure is finitely additive since one can take 4; = ¢ for j large.

The notions of finite and o-finite premeasures are defined just as for measures

The abstract generalization of the notion of outer area is as follows.

An outer measure on a nonempty set X is a function p* : P(X) — [0,00] that satisfies
® ' (¢)=0
® uA) <uB) ifAcB

o w(U4) < zrw(4)

Let (X,M) be a measurable space.
A signed measure on (X, M) is a function v : M — [-o0,00] such that
® u(@) =0
® v assumes at most one of the values + o
® if {E;} is a sequence of disjoint sets in M, then v( UT E) = £Pv(E))

where the latter sum converges absolutely if v( UTE]-) is finite

The most common way to obtain outer measure is to start with a family &€ of “elementary sets”
on which a notion of measure of defined and then to approximate arbitrary sets “from the
outside” by countable unions of members of &

The measure fi is called the completion of u, and M is called the completion of M with respect to u



If (xM,u) is a mesure space, a set E € M such that u(E)=0 is called a null set

By subadditivity, any countable union of null sets is a null set, a fact which we shall use frequently
If a statement about points x € X is true except for x in some null set. we say that it is true
almost everywhere (abbreviated a.e.) or for almost every x.

(If more precision is needed, we shall speak of a u-null set, or u-almost everywhere)

If u(E)=0and F c E, then u(F) = 0 by monotonicity provided that F € M, but in general it need
not be true that F € M. A measure whose domain includes all subsets of null sets is called

complete.

Let X be a nonempty set. An algebra of sets on X is a nonempty collection A of subsets of X that is closed
under finite unions and complements; in other words,
if Ey,...E, € A then JTE; € A ; and if E € A4, then E€ € A,

A o-algebra is an algebra that is closed under countable unions.

It is trivial to verify that the intersection of any family of g-algebras on X is againa a o-algebra.

It follows that if € is any subset of P(X), there is a unique smallest o-algebra M (&) containing €, namely, the

intersection of all o-algebras containing &.

(There is always at least one such, namely, P(X).) M(E) is called the o-algebra generated by &.
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I(I) for the length of I, namely b-a

Lebesgur outer measure( outer measure) m*(4) = inf X I(I,,)

Where the infimum is taken over all finite or countable collections of intervals [I,] such that 4 c I,

The set E is Lebegue measurable( measurable) if for each set A we have

m*(4) = m*(ANE) + m*(ANE°)

As m* is subadditive, to prove E is measurable we need only show, for each A4, that

m*(4) = m*(ANE) + m*(ANE®)

A class of subsets of an arbitrary space X is said to be a o-algebra if X belongs to the class and the class is closed
under the formation of countable unions and of complements

only finite unions we obtain an algebra

M : the class of Lebegue measurable sets

Let A be a class of subsets of a space X. Then there exists a smallest o-algebra S containing A.

We say that S is the o-algebra generated by A

We denoted by B the og-algebra generated by the class of intervals of the form [a,b); its members are called the

Borel sets of R **

limsupE; = ﬂ1 Uiani liminf E; = LJ1 niani

if £, CE, C.., we have m(limE;) = limm(E;)

if E;,2E, 2 .., and m(E;) < o for each |, then we have m(limE;) = limm(E;)
Let f be an extended real-valued function defined on a measurable set E
Then f is a Lebesgue-mesurable function (measurable function) if, for each « € R, the set

[x: f(x) > a] is measurable

** we say that the function f is Borel measurable or a Borel function if Va, [x: f(x) > a] is a Borel set
Let E be a measurable set. Then for each y the set E+y =[ x +y : x € E] is measurable and the measures are

the same.



A non-negative finite-valued function ¢(x), taking only a finite number of different values, is called a simple function.
n

If a;,a, ...,a, are the distint values taken by ¢ and 4; = [x: ¢(x) = a;], then clearly ¢(x) = Z aixa,(x)
1

The sets A; are measurable if ¢ is a measurable funtion

Let ¢ be a measurable simple function. Then [ ¢ dx = ¥Ta;m(4;)

n

where a; A;, i=1,..,n are as in @(x) = Z aixa,(x) is called the integral of ¢
1

For any non-negative measurable function f, the integral of f, [ f dx, is given by

[ fdx =sup [ @ dx, where the supremum is taken over all measurable simple funtions ¢, ¢ < f.

n

J-godx =Zaim(Aj nE)
E 1

godx=f<pdx+ J-(pdx
A B

AUB

Lebsgue’'s Monotone Convergence Theorem

Let { f,, n=1,2,...} be a sequence of non-negative measurable functions such that {f,} is monotone increasing for
each x. Let f =limf,. Then [ fdx = lim [ f, dx.

Let f and g be non-negative measurable functions. Then [ fdx+ [ gdx = [ (f + g) dx

If f(x) is any real fuction, f* = max(f(x),0), f~(x) = max(—f(x),0), are said to be the positive and negative parts

of f, respectively
f=ft-f"

Ifl =f++f"
fff =0

fis measurable iff f* and f~! are both measurable

If £ is a measurable function and [ f*dx < o, [ f~dx < o, we say that f is integrable and its integrable is given

by [fdx=[ftdx—[f dx.

« [Ifldx=[f*dx+[fdx

If E is a measurable set, f is a measurable function, and yzf is integrable, we say that f is integrable over E, and

its integral is given by [ fdx = [ fxe dx. The notation f € L(E) is then sometimes used.



80] "2l 3- FloM %oz

The Lebegue Radon Nicodym Theorem

Let v bea o and u a o positive measure on (X, M)
There exist unique o finite signed measure 2 Ly, p< pu,and v=21+p.
Moreover, there is an extended p integrable function f:X — R such that dp = f dy,

and any two such functions are equal pa.e.

Theorem
Let v be a finite measure and pu a positive measure on (X, M).

Then v « u iff for every & > 0 there exists § > 0 such that |v(E)| < & whenever u(E) < 6.

Corollary

If f € L), for every & > 0 there exists § > 0 such that |[, fdu| < ¢ whenever u(E) < 6.

v is a signed measure and p is a positive measure on (X, M).
We say that v is absolutely continuous with respect to u and write v < u
if v(E) =0 for every E € M for which u(E) =0

It is easily verified that v « u iff |v| « u iff vF « p and v~ « u.

Integration with respect to a signed measure v is defined in the obvious way: We set
L'v)=L'wH n L'(v))

[fdv = [fdvt - [fdv™ ( fel'(v)



The Jordan Decomposition Theorem
If v is a signed measure, there exist unique positive measures v* and v~ such that

v=vt—v~ and vt L v~

v* positive variation of v
v~ negative variation of v
v =v* —v~ Jordan decomposition of v

[v| = vt + v~ total variation of v

v null iff [v|(E) =0,and v Lpuiff v|Lpu iff vt Luand v- Lpu

If v is a signed measure on (X, M), a set E € M is called
positive for v if v(F) =0
negative for v if v(F) < 0

null for v if v(F) =0 forall FeM suchthat F c E

Thus, in the example v(E) = [, fdu described above,
E is positive when f =0
negative when f <0

or null precisely when f =0 py ae.on E

First, if p,, u, are measures on M and at least one of them is finite, then v = u; — u, is a signed measure.
Second, if u is a measure on M and f:X — [—oo,00] is a measurable fuction such that at least one of [ f*du
and [ f~du is finite

we shall call f an extended p integrable function

the set function v defined by v(E) = [.fdu



Let (X,M) be a measurable space. A signed measure on (X, M) is a function
v:M - [—o0, 0] such that

v(¢) =0

v assumes at most one of the values oo

if {E;} is a sequence of disjoint sets in M, then v(U] E;) = X v(E),
where the latter sum converges absolutely if v({J; E;) is finite

Thus every measure is a signed measure

we shall sometimes refer to measures as positive measures.

WIE) = v* () +v(E)
vH(E) = [, f*dp
vi(E) = [,f du
fref=Ifl

[ fdv= [ fdv*

J;Vfdv =—fodv‘

WIE) =v*(E)+v=(E) = [fdlv| =[fdv* + [fdv™

a.I(B) = v*(E) +v7(E) = [fdlv| =[fdv* + [fdv™

b. v =vt—v  =[fdv = [fdvt - [fav



